1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use ast::{self, TokenTree};
use codemap::{Span, DUMMY_SP};
use ext::base::{DummyResult, ExtCtxt, MacResult, SyntaxExtension};
use ext::base::{NormalTT, TTMacroExpander};
use ext::tt::macro_parser::{Success, Error, Failure};
use ext::tt::macro_parser::{MatchedSeq, MatchedNonterminal};
use ext::tt::macro_parser::parse;
use parse::lexer::new_tt_reader;
use parse::parser::{Parser, Restrictions};
use parse::token::{self, special_idents, gensym_ident, NtTT, Token};
use parse::token::Token::*;
use print;
use ptr::P;

use util::small_vector::SmallVector;

use std::cell::RefCell;
use std::collections::{HashMap};
use std::collections::hash_map::{Entry};
use std::rc::Rc;

struct ParserAnyMacro<'a> {
    parser: RefCell<Parser<'a>>,

    /// Span of the expansion site of the macro this parser is for
    site_span: Span,
    /// The ident of the macro we're parsing
    macro_ident: ast::Ident
}

impl<'a> ParserAnyMacro<'a> {
    /// Make sure we don't have any tokens left to parse, so we don't
    /// silently drop anything. `allow_semi` is so that "optional"
    /// semicolons at the end of normal expressions aren't complained
    /// about e.g. the semicolon in `macro_rules! kapow { () => {
    /// panic!(); } }` doesn't get picked up by .parse_expr(), but it's
    /// allowed to be there.
    fn ensure_complete_parse(&self, allow_semi: bool, context: &str) {
        let mut parser = self.parser.borrow_mut();
        if allow_semi && parser.token == token::Semi {
            parser.bump();
        }
        if parser.token != token::Eof {
            let token_str = parser.this_token_to_string();
            let msg = format!("macro expansion ignores token `{}` and any \
                               following",
                              token_str);
            let span = parser.span;
            let mut err = parser.diagnostic().struct_span_err(span, &msg[..]);
            let msg = format!("caused by the macro expansion here; the usage \
                               of `{}!` is likely invalid in {} context",
                               self.macro_ident, context);
            err.span_note(self.site_span, &msg[..])
               .emit();
        }
    }
}

impl<'a> MacResult for ParserAnyMacro<'a> {
    fn make_expr(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Expr>> {
        let ret = panictry!(self.parser.borrow_mut().parse_expr());
        self.ensure_complete_parse(true, "expression");
        Some(ret)
    }
    fn make_pat(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Pat>> {
        let ret = panictry!(self.parser.borrow_mut().parse_pat());
        self.ensure_complete_parse(false, "pattern");
        Some(ret)
    }
    fn make_items(self: Box<ParserAnyMacro<'a>>) -> Option<SmallVector<P<ast::Item>>> {
        let mut ret = SmallVector::zero();
        while let Some(item) = panictry!(self.parser.borrow_mut().parse_item()) {
            ret.push(item);
        }
        self.ensure_complete_parse(false, "item");
        Some(ret)
    }

    fn make_impl_items(self: Box<ParserAnyMacro<'a>>)
                       -> Option<SmallVector<ast::ImplItem>> {
        let mut ret = SmallVector::zero();
        loop {
            let mut parser = self.parser.borrow_mut();
            match parser.token {
                token::Eof => break,
                _ => ret.push(panictry!(parser.parse_impl_item()))
            }
        }
        self.ensure_complete_parse(false, "item");
        Some(ret)
    }

    fn make_stmts(self: Box<ParserAnyMacro<'a>>)
                 -> Option<SmallVector<ast::Stmt>> {
        let mut ret = SmallVector::zero();
        loop {
            let mut parser = self.parser.borrow_mut();
            match parser.token {
                token::Eof => break,
                _ => match parser.parse_stmt() {
                    Ok(maybe_stmt) => match maybe_stmt {
                        Some(stmt) => ret.push(stmt),
                        None => (),
                    },
                    Err(mut e) => {
                        e.emit();
                        break;
                    }
                }
            }
        }
        self.ensure_complete_parse(false, "statement");
        Some(ret)
    }

    fn make_ty(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Ty>> {
        let ret = panictry!(self.parser.borrow_mut().parse_ty());
        self.ensure_complete_parse(false, "type");
        Some(ret)
    }
}

struct MacroRulesMacroExpander {
    name: ast::Ident,
    imported_from: Option<ast::Ident>,
    lhses: Vec<TokenTree>,
    rhses: Vec<TokenTree>,
    valid: bool,
}

impl TTMacroExpander for MacroRulesMacroExpander {
    fn expand<'cx>(&self,
                   cx: &'cx mut ExtCtxt,
                   sp: Span,
                   arg: &[TokenTree])
                   -> Box<MacResult+'cx> {
        if !self.valid {
            return DummyResult::any(sp);
        }
        generic_extension(cx,
                          sp,
                          self.name,
                          self.imported_from,
                          arg,
                          &self.lhses,
                          &self.rhses)
    }
}

/// Given `lhses` and `rhses`, this is the new macro we create
fn generic_extension<'cx>(cx: &'cx ExtCtxt,
                          sp: Span,
                          name: ast::Ident,
                          imported_from: Option<ast::Ident>,
                          arg: &[TokenTree],
                          lhses: &[TokenTree],
                          rhses: &[TokenTree])
                          -> Box<MacResult+'cx> {
    if cx.trace_macros() {
        println!("{}! {{ {} }}",
                 name,
                 print::pprust::tts_to_string(arg));
    }

    // Which arm's failure should we report? (the one furthest along)
    let mut best_fail_spot = DUMMY_SP;
    let mut best_fail_msg = "internal error: ran no matchers".to_string();

    for (i, lhs) in lhses.iter().enumerate() { // try each arm's matchers
        let lhs_tt = match *lhs {
            TokenTree::Delimited(_, ref delim) => &delim.tts[..],
            _ => cx.span_fatal(sp, "malformed macro lhs")
        };

        match TokenTree::parse(cx, lhs_tt, arg) {
            Success(named_matches) => {
                let rhs = match rhses[i] {
                    // ignore delimiters
                    TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
                    _ => cx.span_fatal(sp, "malformed macro rhs"),
                };
                // rhs has holes ( `$id` and `$(...)` that need filled)
                let trncbr = new_tt_reader(&cx.parse_sess().span_diagnostic,
                                           Some(named_matches),
                                           imported_from,
                                           rhs);
                let mut p = Parser::new(cx.parse_sess(), cx.cfg(), Box::new(trncbr));
                p.filename = cx.filename.clone();
                p.mod_path_stack = cx.mod_path_stack.clone();
                p.restrictions = match cx.in_block {
                    true => Restrictions::no_noninline_mod(),
                    false => Restrictions::empty(),
                };
                p.check_unknown_macro_variable();
                // Let the context choose how to interpret the result.
                // Weird, but useful for X-macros.
                return Box::new(ParserAnyMacro {
                    parser: RefCell::new(p),

                    // Pass along the original expansion site and the name of the macro
                    // so we can print a useful error message if the parse of the expanded
                    // macro leaves unparsed tokens.
                    site_span: sp,
                    macro_ident: name
                })
            }
            Failure(sp, ref msg) => if sp.lo >= best_fail_spot.lo {
                best_fail_spot = sp;
                best_fail_msg = (*msg).clone();
            },
            Error(err_sp, ref msg) => {
                cx.span_fatal(err_sp.substitute_dummy(sp), &msg[..])
            }
        }
    }

     cx.span_fatal(best_fail_spot.substitute_dummy(sp), &best_fail_msg[..]);
}

// Note that macro-by-example's input is also matched against a token tree:
//                   $( $lhs:tt => $rhs:tt );+
//
// Holy self-referential!

/// Converts a `macro_rules!` invocation into a syntax extension.
pub fn compile<'cx>(cx: &'cx mut ExtCtxt,
                    def: &ast::MacroDef) -> SyntaxExtension {

    let lhs_nm =  gensym_ident("lhs");
    let rhs_nm =  gensym_ident("rhs");

    // The pattern that macro_rules matches.
    // The grammar for macro_rules! is:
    // $( $lhs:tt => $rhs:tt );+
    // ...quasiquoting this would be nice.
    // These spans won't matter, anyways
    let match_lhs_tok = MatchNt(lhs_nm, special_idents::tt, token::Plain, token::Plain);
    let match_rhs_tok = MatchNt(rhs_nm, special_idents::tt, token::Plain, token::Plain);
    let argument_gram = vec!(
        TokenTree::Sequence(DUMMY_SP,
                   Rc::new(ast::SequenceRepetition {
                       tts: vec![
                           TokenTree::Token(DUMMY_SP, match_lhs_tok),
                           TokenTree::Token(DUMMY_SP, token::FatArrow),
                           TokenTree::Token(DUMMY_SP, match_rhs_tok)],
                       separator: Some(token::Semi),
                       op: ast::KleeneOp::OneOrMore,
                       num_captures: 2
                   })),
        //to phase into semicolon-termination instead of
        //semicolon-separation
        TokenTree::Sequence(DUMMY_SP,
                   Rc::new(ast::SequenceRepetition {
                       tts: vec![TokenTree::Token(DUMMY_SP, token::Semi)],
                       separator: None,
                       op: ast::KleeneOp::ZeroOrMore,
                       num_captures: 0
                   })));


    // Parse the macro_rules! invocation (`none` is for no interpolations):
    let arg_reader = new_tt_reader(&cx.parse_sess().span_diagnostic,
                                   None,
                                   None,
                                   def.body.clone());

    let argument_map = match parse(cx.parse_sess(),
                                   cx.cfg(),
                                   arg_reader,
                                   &argument_gram) {
        Success(m) => m,
        Failure(sp, str) | Error(sp, str) => {
            panic!(cx.parse_sess().span_diagnostic
                     .span_fatal(sp.substitute_dummy(def.span), &str[..]));
        }
    };

    let mut valid = true;

    // Extract the arguments:
    let lhses = match **argument_map.get(&lhs_nm.name).unwrap() {
        MatchedSeq(ref s, _) => {
            s.iter().map(|m| match **m {
                MatchedNonterminal(NtTT(ref tt)) => (**tt).clone(),
                _ => cx.span_bug(def.span, "wrong-structured lhs")
            }).collect()
        }
        _ => cx.span_bug(def.span, "wrong-structured lhs")
    };

    for lhs in &lhses {
        check_lhs_nt_follows(cx, lhs, def.span);
    }

    let rhses = match **argument_map.get(&rhs_nm.name).unwrap() {
        MatchedSeq(ref s, _) => {
            s.iter().map(|m| match **m {
                MatchedNonterminal(NtTT(ref tt)) => (**tt).clone(),
                _ => cx.span_bug(def.span, "wrong-structured rhs")
            }).collect()
        }
        _ => cx.span_bug(def.span, "wrong-structured rhs")
    };

    for rhs in &rhses {
        valid &= check_rhs(cx, rhs);
    }

    let exp: Box<_> = Box::new(MacroRulesMacroExpander {
        name: def.ident,
        imported_from: def.imported_from,
        lhses: lhses,
        rhses: rhses,
        valid: valid,
    });

    NormalTT(exp, Some(def.span), def.allow_internal_unstable)
}

// why is this here? because of https://github.com/rust-lang/rust/issues/27774
fn ref_slice<A>(s: &A) -> &[A] { use std::slice::from_raw_parts; unsafe { from_raw_parts(s, 1) } }

fn check_lhs_nt_follows(cx: &mut ExtCtxt, lhs: &TokenTree, sp: Span) {
    // lhs is going to be like TokenTree::Delimited(...), where the
    // entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
    match lhs {
        &TokenTree::Delimited(_, ref tts) => {
            check_matcher(cx, &tts.tts);
        },
        tt @ &TokenTree::Sequence(..) => {
            check_matcher(cx, ref_slice(tt));
        },
        _ => cx.span_err(sp, "invalid macro matcher; matchers must be contained \
                              in balanced delimiters or a repetition indicator")
    };
    // we don't abort on errors on rejection, the driver will do that for us
    // after parsing/expansion. we can report every error in every macro this way.
}

fn check_rhs(cx: &mut ExtCtxt, rhs: &TokenTree) -> bool {
    match *rhs {
        TokenTree::Delimited(..) => return true,
        _ => cx.span_err(rhs.get_span(), "macro rhs must be delimited")
    }
    false
}

// Issue 30450: when we are through a warning cycle, we can just error
// on all failure conditions and remove this struct and enum.

#[derive(Debug)]
struct OnFail {
    saw_failure: bool,
    action: OnFailAction,
}

#[derive(Copy, Clone, Debug)]
enum OnFailAction { Warn, Error, DoNothing }

impl OnFail {
    fn warn() -> OnFail { OnFail { saw_failure: false, action: OnFailAction::Warn } }
    fn error() -> OnFail { OnFail { saw_failure: false, action: OnFailAction::Error } }
    fn do_nothing() -> OnFail { OnFail { saw_failure: false, action: OnFailAction::DoNothing } }
    fn react(&mut self, cx: &mut ExtCtxt, sp: Span, msg: &str) {
        match self.action {
            OnFailAction::DoNothing => {}
            OnFailAction::Error => cx.span_err(sp, msg),
            OnFailAction::Warn => {
                cx.struct_span_warn(sp, msg)
                    .span_note(sp, "The above warning will be a hard error in the next release.")
                    .emit();
            }
        };
        self.saw_failure = true;
    }
}

fn check_matcher(cx: &mut ExtCtxt, matcher: &[TokenTree]) {
    // Issue 30450: when we are through a warning cycle, we can just
    // error on all failure conditions (and remove check_matcher_old).

    // First run the old-pass, but *only* to find out if it would have failed.
    let mut on_fail = OnFail::do_nothing();
    check_matcher_old(cx, matcher.iter(), &Eof, &mut on_fail);
    // Then run the new pass, but merely warn if the old pass accepts and new pass rejects.
    // (Note this silently accepts code if new pass accepts.)
    let mut on_fail = if on_fail.saw_failure {
        OnFail::error()
    } else {
        OnFail::warn()
    };
    check_matcher_new(cx, matcher, &mut on_fail);
}

// returns the last token that was checked, for TokenTree::Sequence.
// return value is used by recursive calls.
fn check_matcher_old<'a, I>(cx: &mut ExtCtxt, matcher: I, follow: &Token, on_fail: &mut OnFail)
-> Option<(Span, Token)> where I: Iterator<Item=&'a TokenTree> {
    use print::pprust::token_to_string;
    use std::iter::once;

    let mut last = None;

    // 2. For each token T in M:
    let mut tokens = matcher.peekable();
    while let Some(token) = tokens.next() {
        last = match *token {
            TokenTree::Token(sp, MatchNt(ref name, ref frag_spec, _, _)) => {
                // ii. If T is a simple NT, look ahead to the next token T' in
                // M. If T' is in the set FOLLOW(NT), continue. Else; reject.
                if can_be_followed_by_any(&frag_spec.name.as_str()) {
                    continue
                } else {
                    let next_token = match tokens.peek() {
                        // If T' closes a complex NT, replace T' with F
                        Some(&&TokenTree::Token(_, CloseDelim(_))) => follow.clone(),
                        Some(&&TokenTree::Token(_, ref tok)) => tok.clone(),
                        Some(&&TokenTree::Sequence(sp, _)) => {
                            // Be conservative around sequences: to be
                            // more specific, we would need to
                            // consider FIRST sets, but also the
                            // possibility that the sequence occurred
                            // zero times (in which case we need to
                            // look at the token that follows the
                            // sequence, which may itself be a sequence,
                            // and so on).
                            on_fail.react(cx, sp,
                                        &format!("`${0}:{1}` is followed by a \
                                                  sequence repetition, which is not \
                                                  allowed for `{1}` fragments",
                                                 name, frag_spec)
                                        );
                            Eof
                        },
                        // die next iteration
                        Some(&&TokenTree::Delimited(_, ref delim)) => delim.close_token(),
                        // else, we're at the end of the macro or sequence
                        None => follow.clone()
                    };

                    let tok = if let TokenTree::Token(_, ref tok) = *token {
                        tok
                    } else {
                        unreachable!()
                    };

                    // If T' is in the set FOLLOW(NT), continue. Else, reject.
                    match (&next_token, is_in_follow(cx, &next_token, &frag_spec.name.as_str())) {
                        (_, Err(msg)) => {
                            on_fail.react(cx, sp, &msg);
                            continue
                        }
                        (&Eof, _) => return Some((sp, tok.clone())),
                        (_, Ok(true)) => continue,
                        (next, Ok(false)) => {
                            on_fail.react(cx, sp, &format!("`${0}:{1}` is followed by `{2}`, which \
                                                      is not allowed for `{1}` fragments",
                                                     name, frag_spec,
                                                     token_to_string(next)));
                            continue
                        },
                    }
                }
            },
            TokenTree::Sequence(sp, ref seq) => {
                // iii. Else, T is a complex NT.
                match seq.separator {
                    // If T has the form $(...)U+ or $(...)U* for some token U,
                    // run the algorithm on the contents with F set to U. If it
                    // accepts, continue, else, reject.
                    Some(ref u) => {
                        let last = check_matcher_old(cx, seq.tts.iter(), u, on_fail);
                        match last {
                            // Since the delimiter isn't required after the last
                            // repetition, make sure that the *next* token is
                            // sane. This doesn't actually compute the FIRST of
                            // the rest of the matcher yet, it only considers
                            // single tokens and simple NTs. This is imprecise,
                            // but conservatively correct.
                            Some((span, tok)) => {
                                let fol = match tokens.peek() {
                                    Some(&&TokenTree::Token(_, ref tok)) => tok.clone(),
                                    Some(&&TokenTree::Delimited(_, ref delim)) =>
                                        delim.close_token(),
                                    Some(_) => {
                                        on_fail.react(cx, sp, "sequence repetition followed by \
                                                another sequence repetition, which is not allowed");
                                        Eof
                                    },
                                    None => Eof
                                };
                                check_matcher_old(cx, once(&TokenTree::Token(span, tok.clone())),
                                                  &fol, on_fail)
                            },
                            None => last,
                        }
                    },
                    // If T has the form $(...)+ or $(...)*, run the algorithm
                    // on the contents with F set to the token following the
                    // sequence. If it accepts, continue, else, reject.
                    None => {
                        let fol = match tokens.peek() {
                            Some(&&TokenTree::Token(_, ref tok)) => tok.clone(),
                            Some(&&TokenTree::Delimited(_, ref delim)) => delim.close_token(),
                            Some(_) => {
                                on_fail.react(cx, sp, "sequence repetition followed by another \
                                             sequence repetition, which is not allowed");
                                Eof
                            },
                            None => Eof
                        };
                        check_matcher_old(cx, seq.tts.iter(), &fol, on_fail)
                    }
                }
            },
            TokenTree::Token(..) => {
                // i. If T is not an NT, continue.
                continue
            },
            TokenTree::Delimited(_, ref tts) => {
                // if we don't pass in that close delimiter, we'll incorrectly consider the matcher
                // `{ $foo:ty }` as having a follow that isn't `RBrace`
                check_matcher_old(cx, tts.tts.iter(), &tts.close_token(), on_fail)
            }
        }
    }
    last
}

fn check_matcher_new(cx: &mut ExtCtxt, matcher: &[TokenTree], on_fail: &mut OnFail) {
    let first_sets = FirstSets::new(matcher);
    let empty_suffix = TokenSet::empty();
    check_matcher_core(cx, &first_sets, matcher, &empty_suffix, on_fail);
}

// The FirstSets for a matcher is a mapping from subsequences in the
// matcher to the FIRST set for that subsequence.
//
// This mapping is partially precomputed via a backwards scan over the
// token trees of the matcher, which provides a mapping from each
// repetition sequence to its FIRST set.
//
// (Hypothetically sequences should be uniquely identifiable via their
// spans, though perhaps that is false e.g. for macro-generated macros
// that do not try to inject artificial span information. My plan is
// to try to catch such cases ahead of time and not include them in
// the precomputed mapping.)
struct FirstSets {
    // this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
    // span in the original matcher to the First set for the inner sequence `tt ...`.
    //
    // If two sequences have the same span in a matcher, then map that
    // span to None (invalidating the mapping here and forcing the code to
    // use a slow path).
    first: HashMap<Span, Option<TokenSet>>,
}

impl FirstSets {
    fn new(tts: &[TokenTree]) -> FirstSets {
        let mut sets = FirstSets { first: HashMap::new() };
        build_recur(&mut sets, tts);
        return sets;

        // walks backward over `tts`, returning the FIRST for `tts`
        // and updating `sets` at the same time for all sequence
        // substructure we find within `tts`.
        fn build_recur(sets: &mut FirstSets, tts: &[TokenTree]) -> TokenSet {
            let mut first = TokenSet::empty();
            for tt in tts.iter().rev() {
                match *tt {
                    TokenTree::Token(sp, ref tok) => {
                        first.replace_with((sp, tok.clone()));
                    }
                    TokenTree::Delimited(_, ref delimited) => {
                        build_recur(sets, &delimited.tts[..]);
                        first.replace_with((delimited.open_span,
                                            Token::OpenDelim(delimited.delim)));
                    }
                    TokenTree::Sequence(sp, ref seq_rep) => {
                        let subfirst = build_recur(sets, &seq_rep.tts[..]);

                        match sets.first.entry(sp) {
                            Entry::Vacant(vac) => {
                                vac.insert(Some(subfirst.clone()));
                            }
                            Entry::Occupied(mut occ) => {
                                // if there is already an entry, then a span must have collided.
                                // This should not happen with typical macro_rules macros,
                                // but syntax extensions need not maintain distinct spans,
                                // so distinct syntax trees can be assigned the same span.
                                // In such a case, the map cannot be trusted; so mark this
                                // entry as unusable.
                                occ.insert(None);
                            }
                        }

                        // If the sequence contents can be empty, then the first
                        // token could be the separator token itself.

                        if let (Some(ref sep), true) = (seq_rep.separator.clone(),
                                                        subfirst.maybe_empty) {
                            first.add_one_maybe((sp, sep.clone()));
                        }

                        // Reverse scan: Sequence comes before `first`.
                        if subfirst.maybe_empty || seq_rep.op == ast::KleeneOp::ZeroOrMore {
                            // If sequence is potentially empty, then
                            // union them (preserving first emptiness).
                            first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
                        } else {
                            // Otherwise, sequence guaranteed
                            // non-empty; replace first.
                            first = subfirst;
                        }
                    }
                }
            }

            return first;
        }
    }

    // walks forward over `tts` until all potential FIRST tokens are
    // identified.
    fn first(&self, tts: &[TokenTree]) -> TokenSet {
        let mut first = TokenSet::empty();
        for tt in tts.iter() {
            assert!(first.maybe_empty);
            match *tt {
                TokenTree::Token(sp, ref tok) => {
                    first.add_one((sp, tok.clone()));
                    return first;
                }
                TokenTree::Delimited(_, ref delimited) => {
                    first.add_one((delimited.open_span,
                                   Token::OpenDelim(delimited.delim)));
                    return first;
                }
                TokenTree::Sequence(sp, ref seq_rep) => {
                    match self.first.get(&sp) {
                        Some(&Some(ref subfirst)) => {

                            // If the sequence contents can be empty, then the first
                            // token could be the separator token itself.

                            if let (Some(ref sep), true) = (seq_rep.separator.clone(),
                                                            subfirst.maybe_empty) {
                                first.add_one_maybe((sp, sep.clone()));
                            }

                            assert!(first.maybe_empty);
                            first.add_all(subfirst);
                            if subfirst.maybe_empty || seq_rep.op == ast::KleeneOp::ZeroOrMore {
                                // continue scanning for more first
                                // tokens, but also make sure we
                                // restore empty-tracking state
                                first.maybe_empty = true;
                                continue;
                            } else {
                                return first;
                            }
                        }

                        Some(&None) => {
                            panic!("assume all sequences have (unique) spans for now");
                        }

                        None => {
                            panic!("We missed a sequence during FirstSets construction");
                        }
                    }
                }
            }
        }

        // we only exit the loop if `tts` was empty or if every
        // element of `tts` matches the empty sequence.
        assert!(first.maybe_empty);
        return first;
    }
}

// A set of Tokens, which may include MatchNt tokens (for
// macro-by-example syntactic variables). It also carries the
// `maybe_empty` flag; that is true if and only if the matcher can
// match an empty token sequence.
//
// The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
// which has corresponding FIRST = {$a:expr, c, d}.
// Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
//
// (Notably, we must allow for *-op to occur zero times.)
#[derive(Clone, Debug)]
struct TokenSet {
    tokens: Vec<(Span, Token)>,
    maybe_empty: bool,
}

impl TokenSet {
    // Returns a set for the empty sequence.
    fn empty() -> Self { TokenSet { tokens: Vec::new(), maybe_empty: true } }

    // Returns the set `{ tok }` for the single-token (and thus
    // non-empty) sequence [tok].
    fn singleton(tok: (Span, Token)) -> Self {
        TokenSet { tokens: vec![tok], maybe_empty: false }
    }

    // Changes self to be the set `{ tok }`.
    // Since `tok` is always present, marks self as non-empty.
    fn replace_with(&mut self, tok: (Span, Token)) {
        self.tokens.clear();
        self.tokens.push(tok);
        self.maybe_empty = false;
    }

    // Changes self to be the empty set `{}`; meant for use when
    // the particular token does not matter, but we want to
    // record that it occurs.
    fn replace_with_irrelevant(&mut self) {
        self.tokens.clear();
        self.maybe_empty = false;
    }

    // Adds `tok` to the set for `self`, marking sequence as non-empy.
    fn add_one(&mut self, tok: (Span, Token)) {
        if !self.tokens.contains(&tok) {
            self.tokens.push(tok);
        }
        self.maybe_empty = false;
    }

    // Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
    fn add_one_maybe(&mut self, tok: (Span, Token)) {
        if !self.tokens.contains(&tok) {
            self.tokens.push(tok);
        }
    }

    // Adds all elements of `other` to this.
    //
    // (Since this is a set, we filter out duplicates.)
    //
    // If `other` is potentially empty, then preserves the previous
    // setting of the empty flag of `self`. If `other` is guaranteed
    // non-empty, then `self` is marked non-empty.
    fn add_all(&mut self, other: &Self) {
        for tok in &other.tokens {
            if !self.tokens.contains(tok) {
                self.tokens.push(tok.clone());
            }
        }
        if !other.maybe_empty {
            self.maybe_empty = false;
        }
    }
}

// Checks that `matcher` is internally consistent and that it
// can legally by followed by a token N, for all N in `follow`.
// (If `follow` is empty, then it imposes no constraint on
// the `matcher`.)
//
// Returns the set of NT tokens that could possibly come last in
// `matcher`. (If `matcher` matches the empty sequence, then
// `maybe_empty` will be set to true.)
//
// Requires that `first_sets` is pre-computed for `matcher`;
// see `FirstSets::new`.
fn check_matcher_core(cx: &mut ExtCtxt,
                      first_sets: &FirstSets,
                      matcher: &[TokenTree],
                      follow: &TokenSet,
                      on_fail: &mut OnFail) -> TokenSet {
    use print::pprust::token_to_string;

    let mut last = TokenSet::empty();

    // 2. For each token and suffix  [T, SUFFIX] in M:
    // ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
    // then ensure T can also be followed by any element of FOLLOW.
    'each_token: for i in 0..matcher.len() {
        let token = &matcher[i];
        let suffix = &matcher[i+1..];

        let build_suffix_first = || {
            let mut s = first_sets.first(suffix);
            if s.maybe_empty { s.add_all(follow); }
            return s;
        };

        // (we build `suffix_first` on demand below; you can tell
        // which cases are supposed to fall through by looking for the
        // initialization of this variable.)
        let suffix_first;

        // First, update `last` so that it corresponds to the set
        // of NT tokens that might end the sequence `... token`.
        match *token {
            TokenTree::Token(sp, ref tok) => {
                let can_be_followed_by_any;
                if let Err(bad_frag) = has_legal_fragment_specifier(tok) {
                    on_fail.react(cx, sp, &format!("invalid fragment specifier `{}`", bad_frag));
                    // (This eliminates false positives and duplicates
                    // from error messages.)
                    can_be_followed_by_any = true;
                } else {
                    can_be_followed_by_any = token_can_be_followed_by_any(tok);
                }

                if can_be_followed_by_any {
                    // don't need to track tokens that work with any,
                    last.replace_with_irrelevant();
                    // ... and don't need to check tokens that can be
                    // followed by anything against SUFFIX.
                    continue 'each_token;
                } else {
                    last.replace_with((sp, tok.clone()));
                    suffix_first = build_suffix_first();
                }
            }
            TokenTree::Delimited(_, ref d) => {
                let my_suffix = TokenSet::singleton((d.close_span, Token::CloseDelim(d.delim)));
                check_matcher_core(cx, first_sets, &d.tts, &my_suffix, on_fail);
                // don't track non NT tokens
                last.replace_with_irrelevant();

                // also, we don't need to check delimited sequences
                // against SUFFIX
                continue 'each_token;
            }
            TokenTree::Sequence(sp, ref seq_rep) => {
                suffix_first = build_suffix_first();
                // The trick here: when we check the interior, we want
                // to include the separator (if any) as a potential
                // (but not guaranteed) element of FOLLOW. So in that
                // case, we make a temp copy of suffix and stuff
                // delimiter in there.
                //
                // FIXME: Should I first scan suffix_first to see if
                // delimiter is already in it before I go through the
                // work of cloning it? But then again, this way I may
                // get a "tighter" span?
                let mut new;
                let my_suffix = if let Some(ref u) = seq_rep.separator {
                    new = suffix_first.clone();
                    new.add_one_maybe((sp, u.clone()));
                    &new
                } else {
                    &suffix_first
                };

                // At this point, `suffix_first` is built, and
                // `my_suffix` is some TokenSet that we can use
                // for checking the interior of `seq_rep`.
                let next = check_matcher_core(cx, first_sets, &seq_rep.tts, my_suffix, on_fail);
                if next.maybe_empty {
                    last.add_all(&next);
                } else {
                    last = next;
                }

                // the recursive call to check_matcher_core already ran the 'each_last
                // check below, so we can just keep going forward here.
                continue 'each_token;
            }
        }

        // (`suffix_first` guaranteed initialized once reaching here.)

        // Now `last` holds the complete set of NT tokens that could
        // end the sequence before SUFFIX. Check that every one works with `suffix`.
        'each_last: for &(_sp, ref t) in &last.tokens {
            if let MatchNt(ref name, ref frag_spec, _, _) = *t {
                for &(sp, ref next_token) in &suffix_first.tokens {
                    match is_in_follow(cx, next_token, &frag_spec.name.as_str()) {
                        Err(msg) => {
                            on_fail.react(cx, sp, &msg);
                            // don't bother reporting every source of
                            // conflict for a particular element of `last`.
                            continue 'each_last;
                        }
                        Ok(true) => {}
                        Ok(false) => {
                            let may_be = if last.tokens.len() == 1 &&
                                suffix_first.tokens.len() == 1
                            {
                                "is"
                            } else {
                                "may be"
                            };

                            on_fail.react(
                                cx, sp,
                                &format!("`${name}:{frag}` {may_be} followed by `{next}`, which \
                                          is not allowed for `{frag}` fragments",
                                         name=name,
                                         frag=frag_spec,
                                         next=token_to_string(next_token),
                                         may_be=may_be));
                        }
                    }
                }
            }
        }
    }
    last
}


fn token_can_be_followed_by_any(tok: &Token) -> bool {
    if let &MatchNt(_, ref frag_spec, _, _) = tok {
        frag_can_be_followed_by_any(&frag_spec.name.as_str())
    } else {
        // (Non NT's can always be followed by anthing in matchers.)
        true
    }
}

/// True if a fragment of type `frag` can be followed by any sort of
/// token.  We use this (among other things) as a useful approximation
/// for when `frag` can be followed by a repetition like `$(...)*` or
/// `$(...)+`. In general, these can be a bit tricky to reason about,
/// so we adopt a conservative position that says that any fragment
/// specifier which consumes at most one token tree can be followed by
/// a fragment specifier (indeed, these fragments can be followed by
/// ANYTHING without fear of future compatibility hazards).
fn frag_can_be_followed_by_any(frag: &str) -> bool {
    match frag {
        "item" |  // always terminated by `}` or `;`
        "block" | // exactly one token tree
        "ident" | // exactly one token tree
        "meta" |  // exactly one token tree
        "tt" =>    // exactly one token tree
            true,

        _ =>
            false,
    }
}

/// True if a fragment of type `frag` can be followed by any sort of
/// token.  We use this (among other things) as a useful approximation
/// for when `frag` can be followed by a repetition like `$(...)*` or
/// `$(...)+`. In general, these can be a bit tricky to reason about,
/// so we adopt a conservative position that says that any fragment
/// specifier which consumes at most one token tree can be followed by
/// a fragment specifier (indeed, these fragments can be followed by
/// ANYTHING without fear of future compatibility hazards).
fn can_be_followed_by_any(frag: &str) -> bool {
    match frag {
        "item" |  // always terminated by `}` or `;`
        "block" | // exactly one token tree
        "ident" | // exactly one token tree
        "meta" |  // exactly one token tree
        "tt" =>    // exactly one token tree
            true,

        _ =>
            false,
    }
}

/// True if `frag` can legally be followed by the token `tok`. For
/// fragments that can consume an unbounded number of tokens, `tok`
/// must be within a well-defined follow set. This is intended to
/// guarantee future compatibility: for example, without this rule, if
/// we expanded `expr` to include a new binary operator, we might
/// break macros that were relying on that binary operator as a
/// separator.
// when changing this do not forget to update doc/book/macros.md!
fn is_in_follow(_: &ExtCtxt, tok: &Token, frag: &str) -> Result<bool, String> {
    if let &CloseDelim(_) = tok {
        // closing a token tree can never be matched by any fragment;
        // iow, we always require that `(` and `)` match, etc.
        Ok(true)
    } else {
        match frag {
            "item" => {
                // since items *must* be followed by either a `;` or a `}`, we can
                // accept anything after them
                Ok(true)
            },
            "block" => {
                // anything can follow block, the braces provide an easy boundary to
                // maintain
                Ok(true)
            },
            "stmt" | "expr"  => {
                match *tok {
                    FatArrow | Comma | Semi => Ok(true),
                    _ => Ok(false)
                }
            },
            "pat" => {
                match *tok {
                    FatArrow | Comma | Eq | BinOp(token::Or) => Ok(true),
                    Ident(i, _) if (i.name.as_str() == "if" ||
                                    i.name.as_str() == "in") => Ok(true),
                    _ => Ok(false)
                }
            },
            "path" | "ty" => {
                match *tok {
                    OpenDelim(token::DelimToken::Brace) | OpenDelim(token::DelimToken::Bracket) |
                    Comma | FatArrow | Colon | Eq | Gt | Semi | BinOp(token::Or) => Ok(true),
                    Ident(i, _) if (i.name.as_str() == "as" ||
                                    i.name.as_str() == "where") => Ok(true),
                    _ => Ok(false)
                }
            },
            "ident" => {
                // being a single token, idents are harmless
                Ok(true)
            },
            "meta" | "tt" => {
                // being either a single token or a delimited sequence, tt is
                // harmless
                Ok(true)
            },
            _ => Err(format!("invalid fragment specifier `{}`", frag))
        }
    }
}

fn has_legal_fragment_specifier(tok: &Token) -> Result<(), String> {
    debug!("has_legal_fragment_specifier({:?})", tok);
    if let &MatchNt(_, ref frag_spec, _, _) = tok {
        let s = &frag_spec.name.as_str();
        if !is_legal_fragment_specifier(s) {
            return Err(s.to_string());
        }
    }
    Ok(())
}

fn is_legal_fragment_specifier(frag: &str) -> bool {
    match frag {
        "item" | "block" | "stmt" | "expr" | "pat" |
        "path" | "ty" | "ident" | "meta" | "tt" => true,
        _ => false,
    }
}