
Evaluation of performance and
productivity metrics of potential

programming languages in the HPC
environment

— Bachelor Thesis —

Research group Scientific Computing
Department of Informatics

Faculty of Mathematics, Informatics und Natural Sciences
University of Hamburg

Submitted by: Florian Wilkens
E-Mail: 1wilkens@informatik.uni-hamburg.de
Matriculation number: 6324030
Course of studies: Software-System-Entwicklung

First assessor: Prof. Dr. Thomas Ludwig
Second assessor: Sandra Schröder

Advisor: Michael Kuhn, Sandra Schröder

Hamburg, May 2, 2015

mailto:1wilkens@informatik.uni-hamburg.de

Abstract

This thesis aims to analyze new programming languages in the context of high-
performance computing (HPC). In contrast to many other evaluations the focus is
not only on performance but also on developer productivity metrics. The two new
languages Go and Rust are compared with C as it is one of the two commonly used
languages in HPC next to Fortran.
The base for the evaluation is a shortest path calculation based on real world geographical
data which is parallelized for shared memory concurrency. An implementation of
this concept was written in all three languages to compare multiple productivity and
performance metrics like execution time, tooling support, memory consumption
and development time across different phases.
Although the results are not comprehensive enough to invalidate C as a leading language
in HPC they clearly show that both Rust and Go offer tremendous productivity gain
compared to C with similar performance. Additional work is required to further
validate these results as future reseach topics are listed at the end of the thesis.

Table of Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Goals of this Thesis . 6
1.3 Structure . 6

2 State of the art 8
2.1 Programming Paradigms in Fortran and C 8
2.2 Language Candidates . 9

3 Concept 17
3.1 Overview of the Case Study streets4MPI 17
3.2 Differences and Limitations . 18
3.3 Implementation Process . 19
3.4 Overview of evaluated Criteria . 21
3.5 Related Work . 22

4 Implementation 24
4.0 Project Setup . 24
4.1 Counting Nodes, Ways and Relations . 28
4.2 Building a basic Graph Representation 33
4.3 Verifying Structure and Algorithm . 40
4.4 Benchmarking Graph Performance . 44
4.5 Benchmarking Parallel Execution . 48
4.6 Preparing Execution on the High Performance Machine 53

5 Evaluation 56
5.1 Performance . 56
5.2 Productivity and additional Metrics . 59

6 Conclusion 61
6.1 Summary . 61
6.2 Improvements and future Work . 62

Bibliography 63

List of Figures 66

3

List of Tables 67

List of Listings 68

A Glossary 71

B System configuration 74

C Software versions 76

D Final notes 77

4

1. Introduction

This chapter provides some background information to HPC. The first section describes
problems with the currently used programming languages and motivates the search for
new candidates. After that the chapter concludes with a quick rundown of the thesis’
goals.

1.1. Motivation

The world of high-performance computing is evolving rapidly and programming languages
used in this environment are held up to a very high performance standard. This is not
surprising when an hour of computation costs thousands of dollars [Lud11]. The focus
on raw power led to C and Fortran having an almost monopolistic position in the field,
because their execution speed is nearly unmatched.
However programming in these rather antique languages can be very difficult. Although
they are still in active development, their long lifespans resulted in sometimes unintuitive
syntax accumulated over the past centuries. Especially C’s undefined behavior often causes
inexperienced programmers to write unreliable code which is unnecessarily dependent on
implementation details of a specific compiler or the underlying machine. Understanding
and maintaining these programs requires deep knowledge of memory layout and other
technical details. In contrast Fortran does not require the same amount of technical
knowledge but also limits the programmer in fine grained resource control. Both
approaches are not ideal and the situation could be improved by a language offering
both control and high-level abstractions while keeping up with Fortran and C’s execution
performance.
Also considering the fact that scientific applications are often written by scientist without
a strong background in computer science it is evident that the current situation is
less than ideal. There have been various efforts to make programming languages more
accessible in the recent years but unfortunately none of the newly emerged ones have
been successful in establishing themselves in the HPC community to this day. Although
many features and concepts have found their way in newer revision of C and Fortran
standards most of them feel tacked on and are not well integrated into the core language.
One example for this is the common practice of testing. Specifically with the growing
popularity of test-driven development (TDD) it became vital to the development process

5

to be able to quickly and regularly execute a set of tests to verify growing implementations
as they are developed. Of course there are also testing frameworks and libraries for
Fortran and C but since these languages lack deep integration of testing concepts,
they often require a lot of setup and boilerplate code lowering developer productivity.
In contrast, for example, the Go programming language includes a complete testing
framework with the ability to perform benchmarks, perform global setup/tear-down work
and even do basic output verification [maic].
While testing is just one example there are a lot of “best practices” and techniques
which can greatly increase both developer productivity and code quality but require
a language-level integration to work best. Combined with the advancements in type
system theory and compiler construction both C and Fortran’s feature sets look very
dated. With this in mind it is time to review new potential successors of the two giants
of HPC.

1.2. Goals of this Thesis

This thesis aims to evaluate Rust and Go as potential programming languages in the
HPC environment. The comparison is based on three implementations of a shortest
path algorithm in the two language candidates as well as C. The idea is based on an
existing parallel application called streets4MPI which was written in Python. It simulates
ongoing traffic in a geographical area creating heat-maps as a result. The programs
written for this thesis implement the computational intensive part which is the shortest
path calculation to be able to review Go and Rust’s performance characteristics as well
as development productivity based on multiple criteria. Since libraries for inter-process
communication in Rust and Go are nowhere near production-ready this thesis will focus
on shared memory parallelization. Additionally unfair bias based solely on the quality of
the supporting library ecosystem should be avoided.
To reduce complexity the implementations perform no real error handling nor produce
any usable simulation output. They simply perform Dijkstra’s algorithm in the most
language idiomatic way which can optionally be parallelized. While raw performance
will be the main criteria, additional productivity metrics will also be reviewed to rate
the general development experience. Another focus will be the barrier of entry for
newcomers to the respective languages which is important for scientists less proficient in
programming.

1.3. Structure

This first chapter briefly motivated the search for new languages in HPC and outlined the
goals of the thesis. The second chapter State of the Art describes common programming
paradigms in C and Fortran and introduces the various languages which were considered

6

for further evaluation. The following chapter Concept describes the original case study
streets4MPI which the evaluation is based on, illustrates the various phases of the imple-
mentation process and mentions some related work. The fourth chapter Implementation
describes each implementation milestone in detail and briefly comparing intermediate
results. The fifth chapter Evaluation compares the various criteria for both performance
and productivity and judges them accordingly. The final chapter Conclusion summarizes
the results of the evaluation and lists some possible improvements and future work.

7

2. State of the art

This chapter describes the current state of the art in high-performance computing. The
dominance of Fortran and C is explained and questioned. After that all considered
language candidates are introduced and characterized.

2.1. Programming Paradigms in Fortran and C

As stated in Section 1.1, high-performance computing is largely dominated by C and
Fortran and although their trademark is mostly performance these two languages achieve
this in very different ways. Unfortunately both approaches are not completely satisfying
and could be improved.
Fortran (originally an acronym for FORmula TRANslation) is the traditional choice for
scientific applications like climate simulations. As the name suggests it was originally
developed to allow for easy computation of mathematical formulae on computers. In spite
of Fortran being one of the oldest programming languages it is actually fairly high-level.
It provides intrinsic functions for many common mathematical operations such as matrix
multiplication or trigonometric functions and a built-in datatype for complex numbers.
In addition, memory management is nearly nonexistent. In earlier versions of Fortran it
was not possible to explicitly allocate data. Even in programs written in newer revisions
of the language, allocation and memory sharing often only account for a small fraction
of the source code.
While this high-level paradigm of scientific programming is certainly well suited for a
lot of applications, especially for scientists with mathematical backgrounds, it can also
be insufficient in some edge cases. Notably in performance critical sections the intrinsic
functions sometimes are just not fast enough and the programmer has to fall back to
manual solutions or external libraries. Because Fortran does not offer fine grained control
over memory or other resources some algorithms cannot be fully optimized which can
limit performance. Of course this is not the general case and normally the compiler can
generate efficient code but in machine dependent regions like caches or loop unrolling
Fortran simply does not give the programmer enough control to finetune every last bit.
C on the other hand approaches performance totally differently. Developed as a general
purpose language it provides the tools to build efficient mathematical functions and
datatypes which in turn require a lot more micromanagement than their equivalents

8

in Fortran. This allows the programmer to carefully tweak each operation to achieve
maximum performance at the cost of high-level abstractions. Thus C is often the language
of choice for computer scientists when performance is the main concern but it is rather
ill-suited for people without broad knowledge about memory and other machine internals.
The main drawback of both languages is their age. Even though new revisions are
regularly accepted Fortran and C strive to be backwards compatible for the most part.
This has some very serious consequences especially in their respective syntaxes. A
lot of features of newer standards are integrated suboptimally to preserve backwards
compatibility. Newer languages can take advantage of all past research without having
to adhere to outdated idioms and patterns.

2.2. Language Candidates

As previously stated, Go and Rust were chosen to be evaluated in the context of HPC.
This section aims to provide a rough overview of all language candidates that were
considered for further evaluation in this thesis.

Python

Python is an interpreted general-purpose programming language which aims to be very
expressive and flexible. Compared with C and Fortran which sacrifice feature richness
for performance, Python’s huge standard library combined with the automatic memory
management offers a low border of entry and quick prototyping capabilities.
As a matter of fact many introductory computer science courses at universities in
the United States recently switched from Java to Python as their first programming
language [Guo14; Lub14]. This allows the students to focus on core concepts of coding
and algorithms instead of distracting boilerplate code. Listing 2.1 demonstrates just
a few of Python’s core features which make it a great first programming language to learn.

1 # Function signatures consist only of one keyword (def)
2 def fizzbuzz (start , end):
3 # Nested function definition
4 def fizzbuff_from_int (i):
5 entry = ’’
6 if i%3 == 0:
7 entry += "Fizz"
8 if i%5 == 0:
9 entry += "Buzz"

10 # empty string evaluates to false (useable in
↪→ conditions)

9

11 if not entry
12 entry = str(i)
13 return entry
14 # List comprehensions are the pythonic way of composing

↪→ lists
15 return [int_to_fizzbuzz (i) for i in range(start , end +1)]

Listing 2.1: FizzBuzz in Python 3.4

In addition to the very extensive standard library the Python community has created a
lot of open source projects aiming to support especially scientific applications. There is
NumPy1 which offers efficient implementations for multidimensional arrays and common
numeric algorithms like Fourier transforms or MPI4Py2, an Message Passing Interface
(MPI) abstraction layer able to interface with various backends like OpenMPI or MPICH.
Especially the existence of the latter shows the ongoing attempts to use Python in a
cluster environment and there have been successful examples of scientific high performance
applications using these libraries as seen in [WFV14].
Unfortunately dynamic typing and automatic memory management come at a rather
high price. The speed of raw numeric algorithms written in plain Python is almost always
orders of magnitude slower than implementations in C or Fortran. As a consequence,
nearly all of the mentioned libraries implement the critical routines in C. This often means
one needs to make tradeoffs between idiomatic Python - which might not be transferable
to the foreign language - and maximum performance. As a result, performance critical
Python code often looks like its equivalent written in a statically typed language.
In conclusion Python was not chosen to be further evaluated because of the mentioned
lack of performance (in pure Python). This might change with some new implementations
emerging recently though. Most of the problems discussed here are present in all stable
Python implementations today (most notably CPython3 and PyPy4) but new projects
aim to improve the execution speed in various ways. Medusa5 compiles Python code
to Google’s Dart6 to make use of the underlying virtual machine. Although these
ventures are still in early phases of development, first early benchmarks promise drastic
performance improvements. Once Python can achieve similar execution speed to native
code it will become a serious competitor in the HPC area.

Erlang

Erlang is a specific purpose programming language originally designed for the use
in telephony applications. It features a high focus on concurrency and a garbage

1 http://www.numpy.org
2 http://www.mpi4py.scipy.org
3 https://www.python.org
4 http://www.pypy.org
5 https://github.com/rahul080327/medusa
6 https://www.dartlang.org/

10

http://www.numpy.org
http://www.mpi4py.scipy.org
https://www.python.org
http://www.pypy.org
https://github.com/rahul080327/medusa
https://www.dartlang.org/

collector which is enabled through the execution inside the Bogdan/Björn’s Erlang
Abstract Machine (BEAM) virtual machine. Today it is most often used in soft real-time
computing7 because of its error tolerance, hot code reload capabilities and lock-free
concurrency support [CT09].
Erlang has a very unique and specialized syntax which is very different from C-like
languages. It abstains from using any kind of parentheses as block delimiters and instead
uses a mix of periods, semicolons, commas and arrows (->). Unfortunately the rules for
applying these symbols are not very intuitive and may even seem random for newcomers
at times.
One core concept of Erlang is the idea of processes. These lightweight primitives of
the language are provided by the virtual machine and are neither direct mappings of
operating system threads nor processes. One the one hand they are cheap to create and
destruct (like threads) but do not share any address space or other state (like processes).
Because of this, the only way to communicate is through message passing which can be
handled via the receive keyword and sent via the ! operator [Arm03; CT09].

1 %% Module example (this must match the filename - ’.erl ’)
2 -module(example).
3 %% This module exports two functions : start and codeswitch
4 %% The number after each function represents the param count
5 -export([start /0, codeswitch /1]).
6

7 start () -> loop (0).
8

9 loop(Sum) ->
10 % Match on first received message in process mailbox
11 receive
12 {increment , Count} ->
13 loop(Sum+Count);
14 {counter , Pid} ->
15 % Send current value of Sum to PID
16 Pid ! {counter , Sum},
17 loop(Sum);
18 code_switch ->
19 % Explicitly use the latest version of the function
20 % => hot code reload
21 ?MODULE: codeswitch (Sum)
22 end.
23

24 codeswitch (Sum) -> loop(Sum).

Listing 2.2: Erlang example
7 see https://en.wikipedia.org/wiki/Real-time_computing

11

https://en.wikipedia.org/wiki/Real-time_computing

Listing 2.2 illustrates some of these key features like code reloading and message passing.
Further mode Erlang offers various constructs known from functional languages like
pattern matching, clause based function definition and immutable variables but the
language as a whole is not purely functional. Each Erlang process in itself behaves purely
(meaning the result of a function depends solely on its input). The collection of processes
interacting with each other through messages contain state and side effects.
Erlang was considered as a possible candidate for HPC because of its concurrency
capabilities. The fact that processes are a core part of the language and are rather cheap
in both creation and destruction seems ideal for high performance applications often
demanding enormous amounts of parallelism. Sadly Erlang suffers from what one might
call over specialization. The well adapted type system makes it very suited for tasks
where concurrency is essential like serverside request management, task scheduling and
other services with high connection fluctuation, but “The ease of concurrency doesn’t
make up for the difficulty in interfacing with other languages” [Dow11]. Even advocates
of Erlang say they would not use it for regular business logic. In HPC, most of the
processing time is spent solving numeric problems. These are of course parallelized
to increase effectiveness but the concurrency aspect is often not really inherent to the
problem itself. Because of this Erlang’s concurrency capabilities just do not outweigh its
numeric slowness for traditional HPC problems [Héb13].

Go

Go is a relatively young programming language which focuses on simplicity and clarity
while not sacrificing too much performance. Initially developed by Google it aims to
“make it easy to build simple, reliable and efficient software” [maia]. It is statically typed,
offers a garbage collector, basic type inference and a large standard library. Go’s syntax
is loosely inspired by C but made some major changes like removing the mandatory
semicolon at the end of commands and changing the order of types and identifiers. It
was chosen as a candidate because it provides simple concurrency primitives as part of
the language (so called goroutines) while having a familiar syntax and reaching reasone
performance [Dox12]. It also compiles to native code without external dependencies
which makes it usable on cluster computers without many additional libraries installed.
Listing 2.3 demonstrates two key features which are essential to concurrent programming
in Go - the already mentioned goroutines as well as channels which are used for syn-
chronization purposes. They provide a way to communicate with running goroutines via
message passing. The Listing below features a simple example writing multiple messages
concurrently and using these channels to prevent premature exit of the parent thread.

12

1 package main
2

3 import "fmt"
4

5 // Number of gorountines to start
6 const GOROUTINES = 4
7

8 func helloWorldConcurrent () {
9 // Create a channel to track completion

10 c := make(chan int)
11

12 for i := 0; i < GOROUTINES ; i++ {
13 // Start a goroutine
14 go func(nr int) {
15 fmt.Printf("Hello from routine %v", nr)
16 // Signalize completion via channel
17 c <- 1
18 }(i)
19 }
20

21 for i := 0; i < GOROUTINES ; i++ {
22 // Wait for completion of all goroutines
23 <-c
24 }
25 }

Listing 2.3: Go concurrency example

Initially developed for server scenarios Go has seen production use in many different
areas. At Google it is used for various internal project such as the download service
“dl.google.com” which has been completely rewritten from C++ to Go in 2012. The new
version can handle more bandwith while using less memory. It is also noteable that the
Go codebase is about half the size of the legacy application with increased test coverage
and performance [Fit13].
While Go’s focus on simplicity is admireable it has also been its greatest point of criticism.
The language feature set is very carefully selected and rarely extended. It even misses
some of the most natural constructs which a programmer might expect in a reasonably
high-level language - the main example for this beeing generics. At the time of this
writing Go does not offer the common concept of generic types or functions and the
authors have stated this is not a big priority at the moment.
One other important fact - especially for high-performance computing - is the mandatory
garbage collector. Go completey takes the burden of memory management out of the
hands of the programmer and relies on the embedded runtime to efficiently perform

13

this job. This makes it impossible to predictably allocate and release memory which
can lead to performance loss. This also means the Go runtime has to be linked into
every application. To prevent additional dependencies on target machines the language
designers chose to link all libraries statically including the runtime. Although that might
not be important for bigger codebases it increases the binary size considerably.
In the end, Go was mainly chosen to be evaluated further because it provides easy to use
parallel constructs, the aforementioned goroutines. It will probably not directly compete
with C in execution performance but the great toolchain and simplified concurrency
might top the performance loss.

Rust

The last candidate discussed in this chapter is Rust. Developed in the open but strongly
backed by Mozilla Rust aims to directly compete with C and C++ as a systems language.
It focuses on memory safety which is checked and verified at compile without (or with
minimal) impact on runtime performance. Rust compiles to native code using a custom
fork of the popular LLVM 8 as backend and is compatible to common tools like The
GNU Project Debugger (gdb)9 which makes integration into existing workflows a bit
easier. Compared to the discussed here languages int this chapter Rust is closest to C
while attempting to fix common mistakes made possible by its loose standard allowing
undefined behavior.
Memory safety is enforced through a very sophisticated model of ownership tracking. It
is based on common concepts which are already employed on concurrent applications but
integrates them on a language level and enforces them at compile time. The basic rule is
that every resource in an application (for example allocated memory or file handles) has
exactly one owner at a time. To share access to a resource one can you use references
denoted by a &. These can been seen as pointers in C with the additional constraint
that they are readonly. To gain mutable access to a resource one must acquire a
mutable reference via &mut. To ensure memory safety a special part of the compiler,
the borrow checker, validates that there is never more than one mutable reference to the
same resource. This effectively prevents mutable aliasing which in turn rules out a
whole class of errors like iterator invalidation. It is important to remember that these
checks are a “zero cost abstraction” which means they do not have any or at only
minimal runtime overhead but enforce additional security at compile time through static
analysis.
Another core aspect of Rust are lifetimes. As many other programming languages
Rust has scopes introduced by blocks such as function and loop bodies or arbitrary
scopes opened and closed by curly braces. Combined with the ownership system the
compiler can exactly determine when the owner of a resource gets out of scope and call

8 http://www.llvm.org
9 http://www.gnu.org/software/gdb/

14

http://www.llvm.org
http://www.gnu.org/software/gdb/

the appropiate destructor (called drop in Rust). This technique is called “Resource
acquisition is initialization” [Str94, p. 389]. Unlike in C++ it is not limited to stack
allocated objects since the compiler can rely on the ownership system to verify that no
references to a resource are left when its owner gets out of scope. It is therefore safe to
drop and can be safely freed.

1 // Immutability per default , Option type built -in -> no null
2 fn example (val: &i32 , mutable : &mut i32) -> Option <String > {
3 // Pattern matching
4 match *val {
5 /* Ranges types (x ... y notation),
6 * Powerful macro system (called via <macro >!()) */
7 v @ 1 ... 5 => Some(format !("In [1, 5]: {}", v)),
8 // Conditional matching
9 v if v < 10 => Some(format !("In [6 ,10): {}", v)),

10 // Constant matching
11 10 => Some(" Exactly 10". to_string ()),
12 /* Exhaustiveness checks at compile time ,
13 * ’_’ matches everything */
14 _ => None
15 }
16 // statements are expressions -> no need for ’return ’
17 }

Listing 2.4: Rust example

Although Rust focuses on performance and safety it also adopted some functional concepts
like pattern matching and the Option type as demonstrated in Listing 2.4. Combined
with range expressions and macros which operate on syntax level coding in Rust often
feels like in a scripting language which is just very performant. This was also the main
reason it was chosen to be further evaluated. Rust targets safety without sacrificing
any performnce in the process. Most of the checks happen at compile time making
the resulting binary often nearly identical to an equivalent C program. It also has the
advantage of being still in development10 so concepts which did not work out can be
quickly changed or completely dropped.
But the immatureness of Rust is also its greatest weakness. The language is still changing
every day which means code written today might not compile tomorrow. However the
breaking changes are getting less as the first stable release is scheduled to be issued on
2015-05-15. Rust 1.0.0 is guaranteed to be backwards compatible for all later versions so
he language should soon be ready for production use. Meanwhile the toolchain is already
quite impressive. In addition to the compiler the default installation also contains a
package manager called cargo. It is able to fetch dependencies from git repositories or
10 The current version is 1.0.0-beta.2 at the time of this writing

15

the central package repository located on https://crates.io and can build complex
projects including linking to native C libraries. It is obviously still in development but
the feature set is already very broad.
Rust was chosen to be evaluated further because it should be able to match C’s execution
speed while providing additional memory safety and modern language features. Even
if the performance is not completely similar to native code the productivity gains
should still be substantial.

16

https://crates.io

3. Concept

The first section of the third chapter describes the existing application this evaluation is
based on. In addition the various phases of the development process are roughly illustrated.

3.1. Overview of the Case Study streets4MPI

As stated in Section 1.2 the concept for the implementations to compare is inspired by
streets4MPI, which was implemented to evaluate Python’s usefulness for “computational
intensive parallel applications” [FN12, p.3]. It was written by Julian Fietkau and Joachim
Nitschke in scope of the module “Parallel Programming” in Spring 2012 and makes
heavy use of the various libraries of the Python ecosystem. Figure 3.1 provides a rough
overview about the architecture of streets4MPI.

Figure 3.1.: Architecture overview: Streets4MPI [FN12, p. 9]

The GraphBuilder class parses OpenStreetMap (OSM) input data and builds a directed
graph which is stored in the StreetNetwork. The Simulation than uses this data and

17

repeatedly computes shortest paths for a set amount of trips (randomly chosen node
pairs from the graph). Over time it gradually modifies the graph based on results of
previous iterations to emulate structural changes in the traffic network in the simulated
area. The Persistence class then optionally writes to results to a custom output format
which is visualizable by an additional script [FN12].

3.2. Differences and Limitations

Although the evaluated applications are based on the original streets4MPI, there are
some key differences in the implementation. This section gives a brief overview over the
most important aspects that have been changed. The first paragraph of each subsection
describes the original application’s functionality while the second highlights differences
and limitations in the evaluated implementations.
In the remaining part of the thesis the different applications will be referenced quite
frequently. For brevity the language implementations to compare will be called by
the following scheme: “streets4<language>”. The Go version for example is called
“streets4go”.

Input format

The original streets4MPI uses the somewhat dated OSM Extensible Markup Language
(XML) format1 as input which is parsed by imposm.parser2. It then builds a directed
graph via the python-graph3 library to base the simulation on [FN12].
The derived versions require the input to be in “.osm.pbf” format. This newer version of
the OSM format is based on Google’s Protocol Buffers and is superior to the XML variant
in both size and speed [Proc]. It also simplifies multi language development because
the code performing the actual parsing is auto generated from a language independent
description file. There are Protocol Buffers backends for C, Rust and Go which can
perform that generation.

Simulation

The simulation in the base application is based on randomly picked node pairs from the
source graph. For these trips the shortest path is calculated by Dijkstra’s Single Source
Shortest Path (SSSP) algorithm as seen in [Cor+09]. Also a random factor called “jam
tolerance” is introduced to avoid oscillation between two high traffic routes in alternating

1 http://wiki.openstreetmap.org/wiki/OSM_XML
2 http://imposm.org/docs/imposm.parser/latest/
3 https://code.google.com/p/python-graph/

18

http://wiki.openstreetmap.org/wiki/OSM_XML
http://imposm.org/docs/imposm.parser/latest/
https://code.google.com/p/python-graph/

iterations [FN12]. Then after some time has passed in the simulation, existing streets
get expanded or shut down depending on their usage to simulate road construction.
The compared implementations of this thesis also perform trip based simulation but
without the added randomness and street modification. Also the edge weights are not
dynamically recalculated in each iterations. Instead the street’s length is calculated
once from the corrdinates of the corresponding nodes and used as edge weigth directly.
The concrete algorithm is a variant of the Dijkstra-NoDec SSSP algorithm as seen
in [Che+07, p. 16]. It was mainly chosen because of its reduced complexity in required
data structures. The algorithm is implemented separately in all three languages so it
could theoretically get benchmarked standalone to get clearer results. This was not
attempted in scope of the thesis because of time constraints.

Concurrency

streets4MPI parallelizes its calculations on multiple processes that communicate via
message passing. This is achieved with the aforementioned MPI4Py library which
delegates to a native MPI implementation installed on the system. If no supported
implementation is found it falls back to a pure Python solution. Results have show that
the native one should be preferred in order to achieve maximum performance [FN12].
Although Rust as well as Go can integrate decently with existing native code, the reimple-
mentations will be limited to shared memory parallelization on threads. This was mostly
decided to evaluate and compare the language inherent concurrency constructs rather
than the quality of their foreign funtion interfaces. To achieve a fair comparison streets4c
will use OpenMP 4 as it is the de facto standard for simple thread parallelization in C. Of
course this solution might not match the performance of hand optimized implementations
parallelized with the help of pthreads but since the focus is on simple concurrency in the
context of scientific applications OpenMP was selected as the framework of choice.

3.3. Implementation Process

The implementation process was performed iteratively. Certain milestones were defined
and implemented in all three languages. The process only advanced to the next phase
when the previous milestone was reached in all applications. This approach was chosen to
allow for a fair comparison of the different phases of development. If the implementations
would have been developed one after another to completion (or in any other arbitrary
order), this might have introduced a certain bias to the evaluation because of possible
knowledge about the problem aquired in a previous language translating to faster results
in the next one.

4 http://www.openmp.org

19

http://www.openmp.org

Figure 3.2.: Milestone overview

Figure 3.2 shows the different milestones in order of completion. For each phase various
characteristics were captured and compared to highlight the languages’ features and
performance in the various areas. While the main development and test runs were
performed on a laptop the final application was run on a high performance machine
provided by the research group Scientific Computing to compare scalability beyond
common desktop level processors. In the following sections each milestone is briefly
described.

Setting up the Project

The first phase of development was to create project skeletons and infrastructure for the
future development. The milestone was to have a working environment in place where
the sample application could be built and executed. While this is certainly not the most
important or even interesting part it might show the differences in comfort between the
various toolchains.

Counting Nodes, Ways and Relations

The first real milestone was to read a .osm.pbf file and count all nodes, ways and relations
in it. This was done to get familiar with the required libraries and the file format in
general. The time recorded began from the initial project created in phase 0 and finished
after the milestone was reached. As this is the most input and output intensive phase
it should reveal some key differences between the candidates both in speed as well as
memory consumption.

Building a basic Graph Representation

The next goal was to conceptionally build the graph and related structures the simulation
would later operate on. This involved thinking about the relation between edges and
nodes as well as the choice of various containers to store the objects efficiently while also
keeping access simple. In addition the shortest path algorithm had to be implemented.
This meant a priority queue had to be available as the algorithm relies on that data
structure to store nodes which have yet to be processed. This milestone therefore tested
the language’s standard libraries and expressiveness in terms of typed containers.

20

Verifying Structure and Algorithm

After the base structure to represent graphs and calculate shortest paths was in place
it was time to validate the implementations. Unfortunately the OSM data used in
the first phase contained too much nodes and ways to be able to efficiently verify any
computed results. Therefore a small example graph was manually populated and fed to
the algorithm.

Benchmarking Graph Performance

The fourth milestone was preliminary benchmark of the implementations. The basic idea
was to parse the OSM data used in phase one and build the representing graph. After
that the shortest path algorithm is executed once for each node. The total execution
time as well as the time taken for each step (building the graph and calculating shortest
paths) should be measured and compared as well as the usual memory statistics from
previous phases.

Benchmarking Parallel Execution

The fifth phase consisted of modifying the existing benchmark to operate in parallel
via threading and benchmarking the results for various configurations. While all the
development and previous benchmarks were performed on a personal laptop the final
benchmarks were taken on a computation node of the research group to gather relevant
results in high concurrency situations.

Cluster Preperation

The final milestone was to prepare the implementations for the execution on the cluster
provided by the research group. As this was a remote environment with some key
differences to the development laptop the implementations had to be prepared and
slightly changed.

3.4. Overview of evaluated Criteria

For the evaluation of the three languages multiple criteria have been selected. While
some of them are directly quantifiable such as development time others are rated
subjectively based on experiences from the implementation process. This is mostly true
for the productivity metrics. It is important to note that not all statistics apply to all
milestones. The following list introduces the reviewed criteria and briefly describes them.

21

• Performance
– Execution Time
The time to complete the task of the milestone

– Memory Footprint
Total memory consumption as well as allocation and free counts

• Productivity
– SLOC Count
Source lines of code to roughly estimate the code’s complexity and maintain-
ability. Tracked in all milestones

– Development Time
Time required to implementation the desired functionality. Tracked in all
milestones

– Resource Management Amout of work required to properly manage resources
like memory, file handle or threads in a given language

– Tooling Support
Tooling support for common tasks throughout the development process. This
includes the compiler, dependency management, project setup automation and
many more

– Library Ecosystem
Available libraries for the given language considering common data structures,
algorithms or mathematical functions. Includes the quality of the language’s
standard library

– Parallelization Effort
Amount of work required to parallelize an existing sequential application

As these statistics were tracked during the implementation itself the next chapter directly
lists and evaluates intermediate results for each milestone. In contrast Chapter 5 evaluates
the final performance outcomes from the cluster benchmarks as well as the gathered
productivity metrics.

3.5. Related Work

The search for new programming languages which are fit for HPC is not a recently
developing trend. There have been multiple studies and evaluations but so far none of the
proposed languages have gained enough traction to receive widespread adoption. Also
most reports focused on the execution performance without really considering additional
software metrics or developer productivity. [Nan+13] adds lines of code and development
time to the equation but both of these metrics only allow for superficial conclusions
about code quality and productivity.

22

From the candidates presented here Go in particular has been compared to traditional
HPC languages with mixed results. Although its regular execution speed is somewhat
lacking [Mit14] showed the highest speedup from parallelization amongst the evaluated
languages which is very promising considering high concurrency scenarios like cluster
computing. Rust on the other hand has not been seriously evaluated in the HPC context
probably due to it still being developed.

23

4. Implementation

This chapter describes the implementation process for all three compared languages. It is
divided in sections based on the development milestones defined in the previous chapter.
The last section briefly describes the preparation process for the final benchmarks.

4.0. Project Setup

All applications written for this thesis have been developed on Linux as it is the predom-
inant operating system in HPC. They should compile and run on *nix as well but there
is no guarantee this is the case. Also each section assumes the toolchains for the various
languages are installed as this is largely different based on what operating system and
on which Linux distribution is used. It is therefore not covered in this thesis.

4.0.1. C

The buildtool for streets4C is GNU make with a simple handcrafted Makefile . It was
chosen to strike a balance between full blown build systems like Autotools1 or CMake2

and manual compilation. The setup steps required for this configuration are relatively
straight forward and shown in Listing 4.1.

$ mkdir -p streets4c
$ cd streets4c
$ vim main.c
$ vim Makefile
$ make && ./ streets4c

Listing 4.1: Project setup: streets4C

After generating a new directory for the application a Makefile and a sourcefile are
created. main.c contains just a bare bones main method while the Makefile uses
basic rules to compile an executable named streets4c with various optimization flags.

1 http://www.gnu.org/software/software.html
2 http://www.cmake.org

24

http://www.gnu.org/software/software.html
http://www.cmake.org

All in all the setup in C is quite simple although it has to be performed manually. The
only potential problem are Makefile s. They may be easy enough for small projects
without real dependencies but as soon as different source and object files are involved in
the compilation process they can get quite confusing. At that point the mentioned build
systems might prove their worth in generating the Makefile (s) from other configuration
files.

4.0.2. Go

For Go the choice of buildtool is nonexistent. The language provides the go executable
which is responsible for nearly the complete development cycle. It can compile code,
install arbitrary Go packages from various sources, run tests and format source files just
to name the most common features.
This makes Go extremely convenient since only one command is required to perform
multiple common actions in the development cycle. For example to get a dependency
one would invoke the tool like so: go get github.com/petar/GoLLRB/llrb . This will
download the package in source form which can then be imported in any project on that
machine via its fully qualified package name.
To achieve this convenience the go tool requires some setup work before it can be used
for the first time. Because of this this section contains two setup examples.

$ mkdir -p streets4go
$ cd streets4go
$ vim main.go
$ go run main.go

Listing 4.2: Project setup: streets4Go

Listing 4.2 describes the steps that were taken to create the streets4Go project inside
the thesis’s repository. It is pretty similar to the C version. A directory gets created
then a source file containing a main function is created which can be built and run with
a single command. Unfortunately this variant does not follow the guidelines for project
layout as described in the official documentation because the code does not live inside
the globally unique GOPATH folder.
To be able to download packages only once the go commandline utility assumes an
environment variable called GOPATH is configured to point to a directory which it has full
control over. This directory contains all source files as well a the compiled binaries all
stored through a consistent naming scheme. Normally it is assumed that all Go projects
live inside their own subdirectories of the GOPATH but it is possible to avoid this at the
cost of some convenience.
The project that was created through the commands of Listing 4.2 for example cannot
be installed to the system by running go install since it does not reside in the correct
folder instead one has to copy the compiled binary to a directory in PATH manually.

25

https://golang.org/doc/code.html#Workspaces

Listing 4.3 shows a more realistic workflow for creating a new Go project from scratch
without any prior setup required. It expects the programmer to start in the directory
that should be set as GOPATH and uses GitHub as code host which in reality just
determines the package name. It is also important to add the export shown in the first
line to any inititalization file of your shell or operating system to ensure it is accessible
everywhere.

$ export GOPATH=$(pwd)
$ mkdir -p src/github.com/<user >/< project >
$ cd src/github.com/<user >/< project >
$ vim main.go
$ go run main.go

Listing 4.3: Full setup for new Go projects

4.0.3. Rust

Similar to Go also Rust provides its own build system. As mentioned in the candidate
introduction Rust installs its own package manager cargo. It functions as build system
and is also capable of creating new projects. This shortens the setup process considerably
as observable in Listing 4.4.

$ cargo new --bin streets4rust
$ cd streets4rust
$ cargo run

Listing 4.4: Project setup: streets4Rust

With the new subcommand a new project gets created. The --bin flag tells cargo to
create an executable project instead of a library which is the default. Thanks to the one
command all the initial files and directories are created with one single command. This
includes:

• the project directory itself (named like the given project name)
• a src directory for source files
• a target directory for build results

• a required manifest file named Cargo.toml including the given project name

• a sample file inside src which is either called main.rs for binaries or lib.rs
for libraries containing some sample code

• and optionally an empty initialized version control repository (git or mercurial
if the corresponding command line option has been passed)

26

https://www.github.com

The resulting application is already runnable via cargo run3 and produces some output
in stdout. This process is extremely convenient and error proof since cargo validates
all input before executing any task. The man pages and help texts are incomplete at the
moment but as with everything in the Rust world cargo is still in active development.
The overall greatest advantage however is that the Rust process does not involve any
manual text editing. What might sound trivial at first, is actually quite important for
newcomers to the language. You do not have to know any syntax to get started with
Rust since the generated code already compiles. In the other languages ones has to write
a valid, minimal program manually to even test the project setup while Rust is ready to
go after just one command.
Of course this strategy is not without limitations. To be able to use cargo all files
and directories have to follow a special pattern. Although the chosen conventions are
somewhat common one cannot use arbitrary directory and file names.

4.0.4. Comparison

For newcomers Rust definitely provides the best experience. One can get a valid Hello
world! application up and running without any prior knowledge which lowers the barrier
of entry dramatically. In addition Rust does not require any presetup before the first
project. After installing the language toolchain (either through the operating system’s
package manager or the very simple setup script4) the language is completely configured
and the first project can be created.
Go requires some initial setup besides the installation but is still quite easy to setup.
The GOPATH exporting is a small annoyance but it balances out with the benefits the
developer gets later down the line like easy dependency management. The syntax is very
concise so creating a new source file with a main function is still quite fast.
Considering C’s long lifespan the tooling support for project setup is not very good.
Full blown IDEs like Eclipse provide wizards to create all required files but for free
standing development with a simple text editor and GNUmake there is no real automation
possible. Naturally it is not hard to create an empty C source file however the compiler
and linker usability is still years behind other modern toolchains. One example is linking
libraries where the developer can decide between potentially unneeded libraries being
included in the application (with default settings) or having to carefully order the linker
arguments (with the special flag --as--needed) which is tedious when new dependencies
get added later on.
This probably does not apply to experienced C developers and one could make the
argument that it is inherent to the language’s low level nature. But acknowledging the
fact that scientists of other fields more often than not see programming as an unwanted
necessity to be able to complete their research it is questionable whether this technical
know-how should really be required to use a language like C.

3Which is executable anywhere inside the project directory
4 https://static.rust-lang.org/rustup.sh

27

https://static.rust-lang.org/rustup.sh

4.1. Counting Nodes, Ways and Relations

C Go Rust
source lines of code (SLOC) 163 55 36
Development time (hours) 00:51:18 00:21:16 00:33:09
Execution time (sec) 1.017 (-O0) 4.846 (GOMAXPROCS=1) 27.749 (-O0)

0.994 (-O3) 1.381 (GOMAXPROCS=8) 2,722 (-O3)
Allocation count 2,390,566 11,164,0685,6 11,373,558
Free count 2,390,566 11,000,199 11,373,5577

Table 4.1.: Milestone 1: Counting nodes, ways and relations

4.1.1. C

For the first real milestone streets4C had an important disadvantage. There was no
library to conveniently process OSM data. Therefore a small abstraction over the offical
Protocol Buffers definitions had to be written. The development time for this code
located in osmpbfreader.c/h was not counted towards the total time of the phase to
avoid unfair bias just because of a missing library however the SLOC count includes the
additional code since it was essential to this phase.
The first phase of development already highlighted many of the common problems
encountered when programming in the C language. After finishing the aforementioned
library it had to be included in the development process which. This meant the extending
the existing Makefile in order to also compile osmpbfreader.c and include the
resulting object file in assembling the executable binary. This proved harder than
expected which can partly be attributed to the author’s lacking expertise with the C
compilation process but also confirms the unneeded complexity of such a simple task.
Ultimately the problem was the order in which the source files and libraries were passed
to the compiler and linker. The libraries were included too early which resulted in
“undefined reference to method” error messages because the aforementioned linker flag
--as--needed was enabled per default by the Linux distribution. In this mode the
linker effectively treats passed objects files as completed when no missing symbols are
found after the unit has been processed and therefore ignores them in the further linking
process. As a result the arguments have to carefully match the dependency hierarchy
to not accidentally remove a critical library early on so that later files cannot use their
symbols.

5 The memory statistics for Go have not been acquired by valgrind but by runtime.MemStats
6 The fact that Go is garbage collected explains the discrepancy in allocations and frees
7 This is due to a bug in the osmpbf library used. In safe Rust code it is very hard to leak memory

(usually involving reference cycles or something similar).

28

In times where compilers are smart enough to basically rewrite and change code for
performance reasons it is completely inexcusable that the order of source arguments to
process is still that relevant. Meanwhile other toolchains show that it is definitely possible
to accept arguments in arbitrary order and perform the required analysis whether to
include a given library in a second pass. This effectively combines the best of both inferior
strategies the C linker currently supports. The time spent solving these compilation
errors shows in the statistics for C which is considerably larger than its competitors in
this phase.
The other big caveat in working with OSM data was the manual memory manage-
ment. Since data is stored in effectively compressed manner in the file additional heap
allocations were unavoidable in accessing it. This requires either explicit freeing by
the caller or a symmetric deallocation function provided by the library. In the case of
Protocol Buffers it is even worse since a client cannot just perform the usual free() call
but has to use the custom freeing functions generated from the source .proto format
description files. For some intermediate allocations it is possible to limit this to the body
of a library function but on the real data it shifts additional responsibilities on the caller.

1 /* somewhere in a function */
2 osmpbf_reader_t *reader = osmpbf_init (<some_path >);
3

4 OSMPBF__PrimitiveBlock *pb;
5 while ((pb = get_next_primitive (reader)) != NULL)
6 {
7 for (size_t i = 0; i < pb -> n_primitivegroup ; i++)
8 {
9 // access data on the primitive groups

10 OSMPBF__PrimitiveGroup *pg = pb -> primitivegroup [i];
11

12 /* no need to free pg here since its part
13 * of the primitive block pb */
14 }
15

16 // cannot use free(pb) here because of Protobuf
17 osmpbf__primitive_block__free_unpacked (pb , NULL);
18 }
19

20 // regular free function provided by library
21 osmpbf_free (reader);
22 /* remaining part of the function */

Listing 4.5: Manual memory management with Protobuf in C

Listing 4.5 shows this overhead introduced by the mandatory call to osmpbf__primi-
tive_block__free_unpacked in line 17. This results in some very asymmetric interface

29

design since the parsing library has to rely on the client application to explicitly call the
correct free function from the Protocol Buffers library. While this approach is acceptable
for regular allocations via the C standard library, it is a problem here since the allocating
function’s name get_next_primitive does not directly imply a heap allocation (and
the resulting need to free it later).
Considering this fact the SLOC count shown in Table 4.1 is still decent. With the help
of a clever library interface the overhead for the memory management is comparatively
small and the data can be iterated by a while loop which allows for convenient access
and conversion. Also the statistics clearly show why C is still that dominant in the HPC
area. With low allocation counts8 and superior single threaded performance C is the
clear winner in the performance area for this first milestone.

4.1.2. Go

To parse the .osm.pbf files streets4Go uses an existing library simply called osmpbf 9.
The library follows common Go best practices which makes it easy to use. Internally
goroutines are used to decode data in parallel which can then be retrieved through a
Decoder struct. The naming of the struct and the corresponding methods follow the
conventions of the official Decoder types of the Go standard library. This adherence to
conventions directly shows in the development time listed in Table 4.1 which is the
shortest amongst the candidates for this first phase.

1 package main
2

3 import (
4 "fmt"
5 "io"
6 "log"
7 "os"
8 " runtime "
9 "github.com/qedus/osmpbf" // <- add the import

10)
11

12 func main () {
13 decoder := osmpbf. NewDecoder (someFile) // <- use some

↪→ type or function from the package
14 }

Listing 4.6: Dependency management in Go

8 Although these are also partially caused by the simplicity of the custom osmpbfreader abstraction
9 https://github.com/qedus/osmpbf

30

https://github.com/qedus/osmpbf

Dependency management was very easy and intuitive. As mentioned in the candidate
introduction go get was used to download the library and a simple import statement
was enough to pull in the necessary code (see Listing 4.6). One caveat here are once
again Go’s strict compilation rules. Since an unused import is a compiler error an editor
plugin kept deleting the prematurely inserted import statement as part of the saving
process. While the auto fix style of tools like gofmt and goimports is certainly helpful
for fixing common formatting errors, the loss of control for the developer takes some
time to get used to.
Another interesting recorded statistic is the count of source lines of code. This
count exposes one of the criticisms commonly directed at Go - verbose error handling.
Although the code is semantically simpler (no manual memory management, higher
level language constructs) the SLOC count is in fact identical to that of streets4C.
This is partially the result of the common four line idiom to handle errors. A function
that could fail typically returns two values. The desired result and an error value. If
the function failed to execute successfully the error value will indicate the source of the
failed execution. Otherwise this value will be nil signalling a successful completion.
This pattern is used three times in this simple first phase alone which results in 12 lines.

1 func SomeIOFunction (path string) {
2 file , err := os.Open(path)
3 if err != nil {
4 log.Fatal(err) // os.Open returned an error
5 }
6 err = pkg. SomeIOFunc (file)
7 if err != nil {
8 log.Fatal(err) // rinse and repeat
9 }

10 }

Listing 4.7: Idiomatic error handling in Go

Considering the aforementioned simplicity streets4Go’s performance characteristics as
shown in Table 4.1 are very promising. Although in its basic form about four to five
times slower than the C solution the parallelized version achieves similar performance
to streets4C. This version was only included since the library was already based on a
variable number of goroutines. This meant parallelization could be achieved by simply
changing an environment variable in the Go runtime. While this change required only the
addition of a single line, the C abstraction osmpbfreader might not even be parallelizable
without considerable changes to its architecture. This truly shows the power of language
level parallelization mechanics and confirms the choice of Go as a candidate in this
evaluation.

31

4.1.3. Rust

streets4Rust also had the advantage of an existing library to use for OSM decoding
which is called osmpbfreader-rs10. Similar to Go the dependency management was
extremely convenient and simple. The only changes necessary were an added line in the
Cargo manifest (Cargo.toml) and an extern crate osmpbfreader; in the crate root
main.rs . After that cargo build downloaded the dependency (which in this case
meant cloning the Git repository) and integrated it into the compilation process.
Compared to C and Go streets4Rust required a medium amount of development
time and had the lowest SLOC count in this phase as Table 4.1 highlights. This can
mainly be attributed to the library’s use of common Rust idioms and structures like
iterators and enumerations. Unlike their C equivalent, which are basically named
integer constants, Rust enumerations are real types. This means they can be used in
pattern matching expression and act as a target for method implementations similar to
structures. Listing 4.8 shows the complete decoding part of this phase which is very
compact and easy to understand thanks to Rust’s high level constructs.

1 /* in main () */
2 for block in pbf_reader . primitive_blocks ().map (|b|

↪→ b.unwrap ()) {
3 for obj in blocks :: iter (& block) {
4 match obj {
5 objects :: OsmObj :: Node(_) => nodes += 1,
6 objects :: OsmObj :: Way(_) => ways += 1,
7 objects :: OsmObj :: Relation (_) => rels += 1
8 }
9 }

10 }
11 /* remaining part of main () */

Listing 4.8: OSM decoding in Rust

The function blocks::iter (see line 3) returns an enum value which gets pattern
matched on to determine which counter should get incremented. While this example
does not actually use any fields of the objects it would be a simple change to destructure
the enum values and retrieve the structures containing the data rom within.
The execution time highlights another important factor in regards to Rust’s matureness
as a language. The optimized version is more than ten times faster then the binary
produced by default options (see Table 4.1). This is mostly due to the fact that the Rust
LLVM frontend produces mediocre byte code which does not get optimized on regular
builds. That is also the reason release builds take substantially longer. It simply takes

10 https://github.com/textitoi/osmpbfreader-rs

32

https://github.com/textitoi/osmpbfreader-rs

more time to optimize (and therefore often shrink) LLVM Intermediate Representation
(LLVM IR) instead of emitting less code in the first place. Although the code generation
gets improved steadily it is not a big focus until version 1.0 is released but the Rust
core team knows about the issue and it is a high priority after said release.
Nonetheless the release build shows the power of LLVM’s various optimization passes.
streets4Rust achieves the second best single threaded performance after C with a run
time of 2.72 seconds which is impressive considering the vastly shorter development
time and lowest SLOC count across all candidates.

4.1.4. Comparison

The first phase already showed some severe differences in performance between the
evaluated languages. Table 4.1 shows C is the fastest language as expected with Rust
reaching similar single threaded performance. While Go was considerably in the single
threaded variant it was simple to parallelize thanks to goroutines and achieved similar
performance to C. Of course this is not fair comparison but the simplicity of the change
shows the good integration of this parallel construct into the Go language.

4.2. Building a basic Graph Representation

The second milestone was to develop a graph structure to represent the street network
in memory. Like in streets4MPI random nodes from this data would then be fed to
Dijkstra’s SSSP algorithm to simulate trips. Since all applications should be parallelized
later on the immutable data (such as the edge lengths, OSM IDs and adjacency lists)
needed to be stored separately from the changing data the algorithm required (such
as distance and parent arrays). To achieve this all implementations provide a graph
structure holding the immutable data and a dijkstragraph structure to store volatile
data for the algorithm alongside some kind of reference (or pointer) to a graph object.
Since this milestone included a preliminary implementation of the actual algorithm it
required the use of a priority queue which was not directly available in all languages.
Considering this fact the third milestone already highlighted some differences in compre-
hensiveness of the different standard libraries.

C Go Rust
SLOC (total) 385 196 170
Development time (hours) 02:30:32 01:06:06 01:14:28

Table 4.2.: Milestone 2: Building a basic graph representation

33

4.2.1. C

As seen in Table 4.2 this phase resulted in a much higher SLOC count for C. This is
due to the fact that development took place in another source files. To encapsulate graph
functionality properly a new file called graph.c was created. Following established
conventions this meant also creating a matching header (graph.h) to be able to use
the newly written code in the main application. While this separation is decently useful
to not have to waste important space with structure definitions in the main source file
it also introduces a fair bit of redundancy. Functions are declared in the header and
implemented in the source files which means the signature appears twice. In addition C
had the unfortunate problem of not having a proper implementation of a priority queue
easily available which required the addition of another source file / header combination
(util.c/h). This increased the SLOC count even further and added some additional
development time as well.
At this point it became clear that the C version would not be created dependency free.
Advanced data structures such as hash tables or growing arrays are essential when
properly modelling a graph and the choice was made to use the popular GLib11 to provide
these types. It is a commonly used library containing data structures, threading routines,
conversion functions or macros and much more. Since both Rust and Go’s standard
library are much more comprehensive then C’s the addition of GLib to the project is
easily justified.
Implementing the graph representation itself was very straight forward. Similar to the
mathematical representation a graph in streets4C consists of an array of nodes and
edges. To be able to map from OSM IDs to array indices two hash tables were added
with the IDs as keys (of type long) and corresponding indices as values (type int). The
dgraph structure can be created with a pointer to an existing graph and is then able to
execute Dijkstra’s SSSP algorithm.

1 struct node_t
2 {
3 long osm_id;
4 double lon , lat;
5

6 GHashTable *adj; // == adjecent edges/nodes
7 };
8

9 struct edge_t
10 {
11 long osm_id;
12 int length; // == edge weight
13 int max_speed ;

11 https://developer.gnome.org/glib/stable/

34

https://developer.gnome.org/glib/stable/

14 int driving_time ;
15 };
16

17 struct graph_t
18 {
19 int n_nodes , n_edges ;
20 node *nodes;
21 edge *edges;
22

23 GHashTable * node_idx ;
24 GHashTable * edge_idx ;
25 };
26

27 struct dgraph_t
28 {
29 graph g;
30 pqueue pq;
31

32 int cur; // == index of current node to explore
33 int *dist;
34 int * parents ;
35 };

Listing 4.9: Graph representation in C

All structures contain little more than the expected data besides the cur field in dgraph.
It had to be added since Glib’s GHashTable only supports operations on all key-value-
pairs via a function pointer with a single extra argument. Since the algorithm requires
access to the currently explored node’s index as well as the distance and parent arrays
the index needs to be stored in the struct itself.
While the extra field was a minor inconvenience other problematic aspects were the high
amount of verboseness and additional unsafety introduced by the use of GHashTables12.
Since C is not typesafe by design and also does not allow for true generic programming
via type parameters nearly all generic code is written using void*. This leads to very
verbose code because of the high amount of casts involved when accessing or storing
values inside a GHashTable or GArray.
Another complication was the use of integers as keys in GHashTable. It requires both
key and value to be a gpointer (which is a platform independent void pointer) which
forces the programmer to either allocate the integer key on the heap or explicitly cast it
to the correct type. This works well using a macro provided by GLib until the number
zero appears as a value because it represent the NULL pointer which GHashTable also
uses to indicate a key was not found in the hash table. Although there is an extended
12 The hash table implementation provided by GLib

35

function which is able to indicate to caller whether the return value is NULL because it
was stored that way or because it was not found, this problem could have been avoided
by a better API design.
The implementation of Dijkstra’s algorithm was not particularly hard only more verbose
than expected. As mentioned the GHashTable only provides iterative access through an
extra function. As a consequence the step commonly referred to as relax edge is contained
in a separate function that get passed to g_hash_table_foreach. In combination with
the conversion macros and temporary variables the code bloats up.
All in all the experience was poor compared to the other languages. As Table 4.2 shows
the verboseness and missing safety lead to the highest development time and SLOC
count by far. The time was spent debugging some obscure errors introduced by the
excessive casting which might have been avoided by a more sophisticated type system.

4.2.2. Go

In Go the graph is again mostly composed of two arrays holding all nodes and edges.
However Go’s slices and maps are dynamically growing. This means the constructor
function of the graph does not require capacity parameters to initialize these fields since
they can reallocate if necessary. In general the development process was once again very
smooth and simple which shows in the short time spent and the low SLOC count (see
Table 4.2).

1 type Node struct {
2 osmID int64
3 lon , lat float64
4

5 adj map[int]int // == adjecent edges/nodes
6 }
7

8 type Edge struct {
9 osmID int64

10 length int // == edge weight
11 drivingTime uint
12 maxSpeed uint8
13 }
14

15 type Graph struct {
16 nodes [] Node
17 edges [] Edge
18

19 nodeIdx , edgeIdx map[int64]int
20 }

36

21

22 type DijkstraGraph struct {
23 g *Graph
24 pq PriorityQueue
25

26 dist [] uint
27 parents [] int
28 }

Listing 4.10: Graph representation in Go

Listing 4.10 shows that the structures are nearly identical to their C counterparts. Only
the current node index in DijkstraGraph was not required since Go allows for much
better iteration through maps. It is also interesting to note that Go supports (and
even encourages) the declaration of multiple fields of the same type on the same line.
Although this was used only two times in the snippet it shrinks the line count while
keeping the code understandable since two fields with identical types are often related
anyway.
As stated in the introductory part Dijkstra’s algorithm depends on a priority queue.
Despite the fact that Go’s standard library does not directly provide a ready-to-use
implementation thereof the required steps to achieve this were minimal. The package
container\heap13 offers a convenient way to work with any kind of heap. The only
restriction is that the underlying data structure implements a special interface containing
common operations used to heapify the stored data. Since interfaces are implicitly
implemented on all structures which present the necessary methods it was a simple
task to create a full featured priority queue on top of a slice by writing just four trivial
methods. This is illustrated in Listing 4.11.

1 type PriorityQueue [] NodeState
2

3 type NodeState struct {
4 cost uint
5 idx int
6 }
7

8 func (self PriorityQueue) Len () int {
9 return len(self)

10 }
11 func (self PriorityQueue) Less(i, j int) bool {
12 return self[i]. cost < self[j]. cost
13 }
14 func (self PriorityQueue) Swap(i, j int) {

13 http://golang.org/pkg/container/heap/

37

http://golang.org/pkg/container/heap/

15 self[i], self[j] = self[j], self[i]
16 }
17 func (self * PriorityQueue) Push(x interface {}) {
18 *self = append (*self , x.(NodeState))
19 }
20 func (self * PriorityQueue) Pop () (popped interface {}) {
21 popped = (* self)[len (* self) -1]
22 *self = (* self)[: len (* self) -1]
23 return
24 }

Listing 4.11: Priority queue in Go

While the heap implementation was provided by the standard library (which is likely to
be correct) it required the custom methods described in Listing 4.11 to be correct. At this
point Go’s built-in test functionality came in handy. All it took to test the custom
implementation was to create another file called util_test.go (the suffix “_test.go” is
mandatory) and write a simple test. No import besides the testing package were needed
since the code resided in the same package as the main application and all tests got
executed with a single call of go test . In contrast the C implementation required the
setup of an additional source file including a regular main function which then had to
be manually compiled and run. In addition some basic error formatting and output
had to be written to properly locate potential errors in the implementation. Although
all test related statistics are not counted in either language, Go’s automated testing
workflow is clearly superior to the manual, error prone C approach.
All things considered this milestone was easily implemented in Go. The built-in con-
tainer data structures simplified the structure definitions while the provided heap
implementation had a very low entry barrier and produced quick results. As Table 4.2
shows this is reflected in the statistics which are on par with the Rust version discussed
in the next section.

4.2.3. Rust

The original plan for the Rust implementation was to use direct references between nodes
and edges of the graph to allow for easy navigation during the algorithm. Combined
with the guarantees the type system offers it seemed to be a unique approach offering
both convenient access and memory safety. Unfortunately this approach was quickly
dismissed since it would have essentially created circular data structures. While those
are definitely possible to implement, it takes some unsafe marked code and a lot of
careful interface design to retain the aforementioned safety. Due to, once again, time
restrictions an architecture similar to the Go and C variant was implemented.
The interesting differences in contrast to the previously introduced structures are
located in DijkstraGraph. The queue field has the type BinaryHeap which is located

38

in the standard library. This already shows that Rust is the only language out of the
candidates which contains a complete implementation of this data structure as
part of the core libraries. While a priority queue is certainly not an essential component
of every program it was required for this algorithm and having it available right from the
start was beneficial to the development. Listing 4.12 illustrated the resulting structure
definitions.

1 pub struct DijkstraGraph <’a> {
2 pub graph: &’a Graph ,
3 pub queue: BinaryHeap <NodeState >,
4 pub dist: Vec <u32 >,
5 pub parents : Vec <usize >
6 }

Listing 4.12: DijkstraGraph in Rust

The other interesting part is the type of the graph field. As mentioned earlier the struct
calculating the shortest paths needs a reference to the immutable graph data. Ideally
one would like to encode this immutability in the type itself. This is where Rust’s type
system shines. As mentioned in the language introduction regular references only allow
read access. This means DijkstraGraph cannot (accidentally or intentionally) modify
the referenced Graph instance or any of its fields just because the reference does not
allow this. This comes in handy later in a parallel scenario where multiple threads are
reading data from the graph while calculating shortest paths. The read-only reference
(in Rust terms a shared borrow) ensures no data races can happen when accessing the
graph concurrently.
From a productivity standpoint Rust is evenly matched with Go as Table 4.2 clearly
shows. While streets4Go took a little less time to write, streets4Rust has a few less
lines. This mostly came down to the heap implementations being available in the
standard library (which means less code had to be written) and the mentioned deviation
from the original implementation plan, adding some additional development time.

4.2.4. Comparison

Although this milestone did not contain any performance measurements it clearly high-
lighted and emphasized the original argument for a new language in high-performance
computing. In scenarios where complex data structures beyond a simple array are
required C fails to deliver an easy development experience. This was mostly due to
the lack of true generic programming limiting the expressiveness of the implemented
structures and algorithms. Since all casts in C are unsafe anyway but required to enable
genericity, one slight type error can cause segmentation faults which are hard to trace
and correct. A rigid type system might have prevented the code from even compiling in

39

the first place. This clearly underlines that C is not the optimal choice for developing
complex high performance applications.
Go and Rust performed equally well in this phase. Both include a type system suited
to safely use generic containers and provide a sufficient standard library for a decent
implementation of a shortest path algorithm. Although Go’s generics are limited to built-
in types like slices and maps this was not an issue in this phase since no generic methods
had to be written. Rust had the unique advantage to be able to express application
semantics (graph data is immutable to the algorithm) in the type system. Although
that did not solve any immediate problems in the implementation it can help to prevent
a whole class of defects as described in the previous section.

4.3. Verifying Structure and Algorithm

The next goal was to verify the implemented algorithms on some sample data. To achieve
this a sample graph with ten nodes and about 15 edges was constructed followed by a
shortest path calculation for each node. Although performance was measured it was not
the core focus of this phase since the input data was very small and not representative
of the OSM data. Nonetheless the execution time reveals some interesting differences
between the competitors.

C Go Rust
SLOC (total) 633 275 232
Development time (hours) 01:53:30 01:16:49 01:04:38
Execution time (seconds) 0.004 (-O0) 0.686 0.007 (-O0)

0.003 (-O3) 0.005 (-O3)
Allocation count 108 519 47
Free count 10614 169 47
Allocation amount (bytes) 7,86815 53,016 22,792

Table 4.3.: Milestone 3: Verifying the implementation

4.3.1. C

Unsurprisingly the C implementation has the lowest execution time among the com-
pared languages. Unfortunately the performance was once again paid with a high
development time following the trend from previous milestones. In this phase a lot of
time was invested into debugging the custom priority queue implementation. Although

14 Due to the use of GLib some global state remains reachable after exiting. This is likely intended
behavior and not a memory leak (see: http://stackoverflow.com/a/4256967).

15 2,036 bytes were in use at exit see footnote 14

40

http://stackoverflow.com/a/4256967

there was a simple test performed in the last phase the real data revealed a bug when
queuing zero indices. Similar to the GHashTable the zero index was casted to a void
pointer and treated as null which caused errors during the pop operation later on. Unfor-
tunately the defect manifested in the typical C style with a nondescriptive segmentation
fault.
Considering performance C proves once again why it is one of the two major players in
HPC. Table 4.3 shows that the execution time is still unbeaten (even unoptimized)
and the allocation amount is the lowest among the contestants by far. As explained in
the annotation the mismatch in malloc and free calls can be explained by the inclusion
of GLib. For its advanced features like memory pooling it retains some global state
which valgrind mistakenly classifies as a potential leak.

4.3.2. Go

The verification in Go took a little bit longer than expected. Although the implementation
itself was quickly completed it exposed some errors in the original graph structure. The
main problem was the initialization of the graph slices. The previous implementation
used the built-in function make to create a slice with an initial capacity. When adding
nodes to the slice later another built-in function append was used under the assumption
the slice would be empty initially. This was not the case since Go had just filled the whole
slice with empty node objects. This caused errors later down the line when these empty
objects were used in Dijkstra’s algorithm. The problem was later solved by changing the
creation function from make to new. This method just creates a new array and lets the
slice point into it reallocating later if necessary.
While the actual change in code was minimal the origin of this defect is interesting. As
mentioned above all three functions interacting with the slice are built into the language
itself. This approach was explicitly chosen to make common operations (like creating,
retrieving the length or capacity) on common types (like slices, arrays and maps) more
accessible. Unfortunately these functions obviously have slightly different meanings
on different types resulting in some unexpected behavior. This is certainly something
which can be picked up when using Go for extended periods of time. But for newcomers
especially it can cause some confusion and while the new variant with new works it is
unclear whether this is the idiomatic way to create growing slices.
From a performance standpoint streets4go falls short compared to the other implemen-
tations as Table 4.3 highlights. This can mostly be explained by the Go runtime. It
needs some initial setup time and memory which increases the allocation amount and
prolongs execution time. Since this was a very small benchmark only used to validate
the implementations these little static costs make up a much higher percentage of the
total statistics.

41

4.3.3. Rust

During the implementation an effort was made to randomize the order of languages
between milestones. It just so happened that Rust was the last candidate in this phase
since an update in the nightly version of the compiler broke the Protocol Buffers package
on which the OSM library depended on. Although the author of the dependency was
quick to update the code to the changes there was a downtime of about three to four
days where the development could not continue since the other versions were finished but
streets4Rust did not build. Although this was the only case where the code was majorly
broken for larger timespan it still effectively halted the whole process. Luckily the first
stable release is scheduled for shortly after the deadline of this thesis so this should not
really be a problem later on.
In this case it was even an advantage that the Rust version was developed last since
it revealed a critical error in the other implementations. When creating the
sample graph all data was derived from indices of two for loops. The assumption was
that edges created in the second loop would only reference existing nodes created in the
first one. Since both other implementations did not crash or produce any errors the
creation code was not thoroughly verified. Running the same sample data through the
Rust application revealed the error. The add_edge method did not check whether the
edge IDs passed as arguments were previously added to the graph. This is mandatory
since the IDs get converted to array indices to be able to add the nodes in the respecting
adjacency lists. A map lookup in Go or C is achieved via the indexing operator which
then returns and the value element associated with the given key. Obviously this
operation can fail when the given key is not found in the map. While both C and
Go indicate this error case with a return of zero the possibility of failure is directly
encoded in the corresponding Rust. Instead of simply returning the value it returns an
Option which is a Rust enumeration is either containing a value or None. This type
is a perfect fit for functions which might fail to return the desired value since it shifts
the responsibility to deal with the failure to the callee which can potentially recover or
otherwise abort completely. The Listings 4.13 and 4.14 show the id to index conversion
in Go and Rust highlighting the differences.

1 func (g *Graph) AddEdge (n1 , n2 int64 , e *Edge) {
2 // [..]
3 // link up adjecents
4 n1_idx , n2_idx := g. nodeIdx [n1], g. nodeIdx [n2]
5 // [..]
6 }

Listing 4.13: Map lookup in Go

42

1 pub fn add_edge (& mut self , n1: i64 , n2: i64 , e: Edge) {
2 // [..]
3 // link up adjecents
4 let n1_idx = self. nodes_idx .get (&n1).unwrap ();
5 let n2_idx = self. nodes_idx .get (&n2).unwrap ();
6 // [..]
7 }

Listing 4.14: Map lookup in Rust

Although not shown here the C version behaves identical to the Go version but uses a
static function g_hash_table_lookup. While the indexing seems more convenient it
does not offer precise feedback over the success state of the operation. In this context
this is especially critical since zero is a semantically valid index to retrieve. As mentioned
above the return value of Rust’s HashMap.get is an Option and as such it has to be
“unwrapped” to get the contained value. This method panics the thread if called on a
None value which is exactly what happened when the application processed the sample
data. Further investigation then revealed a missing check whether the key is contained in
the map which got silently ignored in both other applications. This is a good example of
how a sophisticated type system can prevent potential errors through descriptive
types.
The statistics for this milestone are once again very promising for Rust as Table 4.3
proves. With the lowest SLOC count as well as development time it still remains
competitive with the execution performance of C. The allocation count also hints
that Rust’s vectors probably have a bigger reallocation factor than the GHashTable from
GLib. While the count of function calls is smaller the amount of memory allocated is
larger.

4.3.4. Comparison

This milestone highlighted the importance of strong type systems in particular. They
can prevent bugs which would otherwise require intensive testing to be even noticed
in the first place. Rust shines in this discipline. Its type system not only pretty much
guarantees memory safety but also allows libraries to encode usage semantics into
function signatures preventing some cases of possible misuse. In addition C once
again comes in last in terms of developer productivity and while the performance
benefit is still in its favor Rust reaches a similar speed which took only about half as
long to implement. While Go is certainly not as fast as the other two languages as of yet
it is a very comfortable language and allows for some decent productivity gains.

43

4.4. Benchmarking Graph Performance

In this milestone runtime performance came back into the main focus. Since the
algorithms at this point were proven to work correctly they could now be applied to
real geographical data. The main technical challenge here was to efficiently process
the input file while ideally directly filling the graph with the accumulated data. The
problem was handling of OSM ways which are later represented by one or more edges in
the graph. The input format lists all IDs of the nodes which are part of the way but
these nodes might not have been processed and added to the graph yet. This forced the
implementations to retain this metadata in some way and construct edges from that
data in a second step.

C Go Rust
SLOC (total) 757 359 292
Development time (hours) 01:14:32 00:56:16 00:45:20
Execution time (hours) 08:34:01 (-O3) 09:08:19 07:31:37 (-O3)
Memory usage (MB)16 994 1551 2235

Table 4.4.: Milestone 4: Sequential benchmark

4.4.1. C

For streets4C the most time was spent on dealing with the edges. As mentioned in the
introductory part they need to be saved and added later. This either required knowing
the amount of edges beforehand (to be able to preallocate an array large enough to
store all information) or to use a dynamically growing array to store them as they get
processed. Since the amount of edges is not stored in the OSM file, the first approach
would have to read the whole input file twice to count edges (and ideally nodes too) first
and then parse the actual data in the second run. To prevent this the second design was
chosen and implemented.
Self-reallocating arrays are not part of the C language or standard library and so the
application had to rely on GLib once again. The used types were GPtrArray to store
pointers to the heap allocated node and edge structures and the regular GArray to store
the OSM IDs of the constructed edges. With this implementation the file only needed to
get read once creating the actual values and counts (useful to pass to the graph creation
method as capacities later) in the process.
Another option would have been to rewrite part of the graph structure to use GArrays
internally for storing edges and nodes in the first place. This idea was not realized to keep
the number of external data structures in the graph representation minimal. However
that change would have simplified this milestone considerably.
16 Obtained via htop (http://hisham.hm/htop/) at the time of shortest path calculation

44

http://hisham.hm/htop/

The performance statistics from this phase contain the first real surprise. As Table 4.4
clearly shows streets4C does not have the lowest execution time and Rust outshines the
C implementation by more than an hour. This might reflect a suboptimal architecture
on the C side which can be traced back to the author’s limited experience with the
language. However this might very well be reflective of a scientist with similarly limited
programming skills. Considering the development time and SLOC count the result
is even more alarming. The redeeming factor for C is the memory footprint which is
the lowest among the three languages. Although memory is typically not as critical as
processing time it is still an important criteria when evaluating HPC applications and
has to be taken into account.

4.4.2. Go

This phase did not offer any difficult technical challenges for the Go implementation.
Nodes could be added right as they were encountered while parsing whereas edges were
temporarily stored in a growing slice and were appended in a second pass.
An essential function for this milestone was the calculation of the length between two
nodes based on latitude and longitude. Based on streets4MPI the haversine formula17

was chosen to perform this calculation. This kind of mathematical formulae can be
implemented very compactly in Go. Especially the assignments of multiple variables in
the same line helps readability and reduces the amount of lines required.
While the Listing 4.15 is a bit small in width the advantages should be clearly
visible. The multiline assignments are very compact and are useful for these shortlived
intermediate results. In Go all identifiers are located on the left side of the assignment
while a multi assignment in C consists of multiple assignment separated with a comma.
This mix of identifiers and values takes some additional time to mentally parse - a
problem which the Go way does not suffer from.

1 const conversionFactor = math.Pi / 180
2

3 func Rad(deg float64) float64 {
4 return deg * conversionFactor
5 }
6

7 func HaversineLength (n1 , n2 *Node) float64 {
8 lat1 , lon1 , lat2 , lon2 :=
9 Rad(n1.lat), Rad(n1.lon), Rad(n2.lat), Rad(n2.lon)

10 dlat , dlon := lat2 -lat1 , lon2 -lon1
11 a := math.Pow(math.Sin(dlat /2) , 2) + math.Cos(lat1) *
12 math.Cos(lat2) * math.Pow(math.Sin(dlon /2) , 2)

17 http://en.wikipedia.org/wiki/Haversine_formula

45

http://en.wikipedia.org/wiki/Haversine_formula

13 c := 2 * math.Asin(math.Sqrt(a))
14 return 6367000 * c // distance in m
15 }

Listing 4.15: Haversine formula in Go

In the performance comparison shown in Table 4.4 Go comes in at the third place as
expected but the gap to C is actually not as big predicted. Interestingly streets4Go has
only the second highest memory consumption despite being garbage collected and
therefore lacking deterministic destruction. This differentiates Go from other garbage
collected languages like C# or Java which encourage allocation heavy programming under
the premise that memory cannot leak and can therefore be allocated often.

4.4.3. Rust

The Rust implementation follows the same pattern as the Go version. Nodes are added to
the graph as they are decoded while edges are stored in a vector to add later. During the
implementation though there was a small problem caused by Rust’s ownership model. It
essentially prevented the application from freely moving around the structures generated
from the input data as ownership of these instances had to be passed to the graph
correctly.
After the input data has been processed the edges vector contains all edges found in
the file. Which means in Rust terms that the vector owns all objects inside it. On the
other hand the add_edge method also needs to take ownership of the edge argument
passed to it. This was a deliberate choice while designing the interface since the graph
should own all edges and nodes it consists of. This creates a conflict because indexing
the vector only returns a reference to the object. The solution was to use a moving
iterator to remove the objects from the vector to be able to pass them to add_edge. In
addition the two node IDs of the edge, which were stored in additional vectors, needed
to be retrieved the same way. To achieve this the two iterators were zipped and as a
consequence ownership of the edge instance could be transferred to the graph while the
two 64-bit integers n1 and n2 are implicitly copied.18 Listing 4.16 illustrates this process.

1 fn benchmark_osm (osm_path : &Path) {
2 // [.. initial setup ..]
3 let mut g = Graph :: new ();
4 let mut edges = Vec :: new ();
5 let mut indices = Vec :: new ();
6

7 // [.. parse nodes and edges ..]

18 This happens because i64, like all primitives, implements the Copy trait allowing it be copied instead
of moved

46

8

9 // Add edges to graph
10 for (mut e, (n1 , n2)) in edges. into_iter ()
11 .zip(indices . into_iter ()) {
12 e.length = graph :: haversine_length (
13 &g.nodes[g. nodes_idx [&n1]],
14 &g.nodes[g. nodes_idx [&n2]]) as u32;
15 g. add_edge (n1 , n2 , e);
16 }
17 // [.. perform calculations ..]
18 }

Listing 4.16: Zipped iterators in Rust

The Iterator.zip method (see line 11) takes an iterator and returns a composite
iterator which yields elements from the two as a pair. Here indices is a vector
of pairs of i64 (Rust’s 64-bit integer) so the iterator created by zip yields a pair of
type (edge, (i64, i64)). Also the edge length had to be calculated before the
edge could be added to the graph. This meant the mut keyword had to be added
in front of the edge variable. The resulting expression for (mut e, (n1, n2))in
↪→ edges.into_iter().zip(indices.into_iter()) looks very complicated but is
actually pretty simple when taken apart. These tangled statements are probably the
major disadvantage of the complex type system. There are a lot of sigils which sometimes
even have double meanings. Ultimately though it has to be noted that the compiler
messages are very helpful even in these seemingly complex situations. They are a big
reason why the development time for this milestone is the lowest despite the difficulties
with the ownership. It takes some time to be able to parse through the sheer amount of
information the compiler prints in case of a problem but once that is done the messages
help to identify all kinds of errors rather quickly.
The performance comparison was specifically interesting in this phase because Rust
was actually ahead of C for the first time (see Table 4.4). It is also remarkable that the
development time and SLOC count are the lowest of the three languages compared.
This means the usual tradeoff between performance and productivity does not
apply in this particular case and Rust straight up beats Go and C in three important
categories which is impressive.

4.4.4. Comparison

This milestone really highlighted the power of Rust. On the one hand it increases
productivity through high level abstractions saving valuable development time. On
the other hand these abstractions produce very efficient machine code even beating C
in execution time by about 33%. Unfortunately they also consume about twice the
amount of memory. Since the structures contain nearly the same fields it is unclear

47

what causes this big difference exactly but considering Rust’s current development state
these results are promising and might even improve with optimizations when the language
reaches a stable release.
Although the results for the C implementation as seen in Table 4.4 are certainly still
optimizable and may be the consequence of a subotimal architecture, the statistics
undeniably show that it is possible to write faster applications in less time using
Rust instead of C with moderate experience in both languages. Go also produces decent
results especially in the productivity sections. Only slightly slower than C streets4Go
took vastly less development time and consumes less memory than the Rust version.

4.5. Benchmarking Parallel Execution

Last but not least it was time to parallelize the calculations. Because the algorithm
itself is not very easy to execute concurrently the choice was made to calculate multiple
shortest paths in different threads. Also the main loop over the first 100.000 nodes was
already in place from the previous milestone and so only this block had to be updated
to run in parallel.
It is also important to note that the parallelized code does not make any use of the
computed results as the previous versions did not do that either. In concurrent scenarios
this becomes a separate problem because of synchronization issues. Although it is not
included in the implementations each of the following sections will describe possible
strategies to deal with the calculated results in an idiomatic way.
The resulting code from this milestone was later benchmarked on a cluster computer of
the research group. To lower binary size all applications were stripped of unneeded code
for this final phase. This mostly meant removing the incremental parts from previous
milestone as they were not required for the final versions. The result are two SLOC count
categories for this phase. The first is the logical continuation from the previous phases
counting all lines written up to this point while the second represents the final amount
of lines required after all old code had been removed and the benchmark function was
inlined into the main function. This number really shows how much lines were needed to
successfully implement the application in each language.

C Go Rust
SLOC (incl. previous phases) 777 381 314
SLOC (final) 668 285 253
Development time (hours) 00:08:11 00:07:56 00:27:23
Execution time (4 threads) (hours) 03:22:21 (-O3) 03:47:30 02:32:06 (-O3)
Memory usage (4 threads) (MB)19 1213 1693 2501

Table 4.5.: Milestone 5: Parallel benchmark

48

The execution time and memory usage were measured on the development laptop
with 4 threads to have a quick overview about the general performance of each application.
Although it is not representative of the final results the tracked statistics were the result
of the same code that was later extensively run on the high performance machine.

4.5.1. C

As mentioned in the previous chapter OpenMP was the framework of choice to parallelize
streets4C. Given this there were two possible approaches to consider. Either the for
pragma applied to the existing loop or a regular omp parallel block calculating
offsets manually. To have finer grained control over the threads the seconds strategy
was favored. Listing 4.17 shows the resulting omp parallel block with some print
statements removed for brevity.

1 static void benchmark_osm (char* path)
2 {
3 // [.. parse input data ..]
4

5 // Setup OpenMP
6 omp_set_dynamic (0);
7 omp_set_num_threads (NUM_THREADS);
8

9 #pragma omp parallel
10 {
11 // Calculate limits for this thread
12 int id = omp_get_thread_num ();
13 int first = id * nodes_per_thread ;
14 int last = first + nodes_per_thread ;
15

16 dgraph dg = new_dgraph (g);
17 for (int i = first; i < last; i++)
18 {
19 dijkstra (dg , i); // Calculate shortest paths
20 }
21 free_dgraph (dg);
22 }
23

24 // [.. final cleanup ..]
25 }

Listing 4.17: Parallelization with OpenMP

19 Obtained via htop (http://hisham.hm/htop/) at the time of shortest path calculation

49

http://hisham.hm/htop/

The required changes were less than expected which proves why OpenMP is a popular
choice for thread based parallelization in C. The existing loop was surrounded with the
correct pragma and of course each thread has to calculate new limits for the loop based
on its id. Luckily the dgraph structure was designed with concurrency in mind and as
such can be instantiated independently in each thread. The dijkstra function is then
called in a loop to calculate shortest paths for all nodes this thread was assigned to
process and results are discarded immediately.20

The idiomatic way in C to save and use the resulting data would be writing to a shared
array. Assuming the nodes processed by each thread are disjoint the array access can
be safely shared for writing. While the benchmarked implementation actually does not
guarantee this for all amounts of threads (because of remainders in certain configurations)
it could easily be changed to use this pattern. It is also possible to create a result array
in each thread and then later manually reduce it to a global one via an omp critical
section. While this approach would theoretically support overlapping node lists in
different threads it is not very useful in this context because the affected values would
just be overwritten. Also the use of a critical block obviously impacts performance quite
heavily because threads might have to wait for each other to finish the global update.
Table 4.5 shows once again C as only second fastest implementation. While these results
were only gathered from a single run they still show an ongoing trend from the previous
phase. The short development time can be attributed to OpenMP’s matureness as a
framework reducing the changes to a bare minimum. Only beaten by Go (which basically
chosen for a promise of simple concurrency) this result is very positive and is a welcome
contrasts to previous milestones.

4.5.2. Go

streets4Go obviously used goroutines for concurrent execution. As predicted the changes
to parallelize the application were minimal and simple. A for loop was added to start
up the required amount of goroutines which then calculate their limits based on the
outer loop index and start executing the algorithm. Listing 4.18 shows the relevant lines
responsible for concurrent execution without print statements.

1 func benchmarkOsm (path string) {
2 // [.. parse input data ..]
3

4 // To wait goroutines later on
5 var wg sync. WaitGroup
6 runtime . GOMAXPROCS (NUM_THREADS)
7

20 This is not directly clear from the code but the calculating function only stores results in the struct
and since the loop instantly continues to the next node they are overwritten during the next call

50

8 for i := 0; i < NUM_THREADS ; i++ {
9 wg.Add (1) // Increase WaitGroup counter

10 go func(id int) {
11 defer wg.Done () // Decrease counter when the

↪→ goroutine exits
12

13 dg := FromGraph (g)
14 first := id * nodes_per_thread
15 last := first + nodes_per_thread
16

17 for n := first; n < last; n++ {
18 dg. Dijkstra (n)
19 }
20 }(i)
21 }
22

23 wg.Wait ()
24 }

Listing 4.18: Parallelization with goroutines

The existing for loop was surrounded by a second one starting up goroutines to work
concurrently. In typical fashion these goroutines get their function body passed as an
anonymous function with the loop argument passed as a parameter. While it would be
possible to extract the code into a separate function and call it with the go keyword this
solution is much easier to understand and really highlights how anonymous functionc
can enhance code readability. To prevent the parent thread from returning prematurely
a WaitGroup is added which effectively joins all running goroutines before exiting.
The common way in Go to share memory is by communicating over channels. As the
data from the graph was only read it was easier to just share the memory read-only but
for concurrent writes channels are definitely preferred. The actual implementation would
create a channel pair in the parent thread and then pass a copy of the transmitting end
to all goroutines. When a calculation is finished the result is written to the channel and
the loop continues. The parent thread can wait to retrieve results from the receiving end
of the channel and store or directly use them for further calculations.
Considering performance Table 4.5 once again places Go slightly behind C in the with
lower memory usage than Rust. Considering the low amount of work required to
achieve this runtime it is safe to say Go fulfilled the promise of simple concurrency.

4.5.3. Rust

While both other languages had the advantage of having a framework of some sort at
their disposal the Rust solution creates raw threads to parallelize the execution. This

51

shows in the development time which is more than three times as high as the time
spent on the other implementations. Listing 4.19 below includes the relevant parts from
the parallel version of the benchmark function.

1 fn benchmark_osm (osm_path : &Path) {
2 // [.. parse input data ..]
3 let graph = &g; // immutable reference to copy into the

↪→ closures below
4

5 let num_nodes = NUM_NODES / NUM_THREADS ;
6 let mut guards = Vec :: with_capacity (NUM_THREADS);
7

8 // Spawn NUM_THREADS amount of worker threads
9 for id in 0.. NUM_THREADS {

10 guards.push(thread :: scoped(move || {
11 let first = id * num_nodes ;
12 let last = first + num_nodes ;
13 let mut dg = DijkstraGraph :: from_graph (graph);
14

15 for n in first .. last {
16 dg. dijkstra (n);
17 }
18 }));
19 }
20

21 // Join all threads before exiting
22 for g in guards {
23 g.join ();
24 }
25 }

Listing 4.19: Parallelization with threads in Rust

Similar to the Go variant an outer loop is added responsible for spawning child threads
which calculate shortest paths concurrently. Again comparable to Go each thread receives
its work through an anonymous function. As the keyword move suggests all variables
used inside this function are essentially moved inside the thread and cannot be used after
that. Luckily references and primitives implement the Copy which allows them to be
copied instead. To be able to copy a reference to the graph data into the thread stack
it has to be explicitly bound (line 3). Otherwise the use of &g would cause a move of
the graph itself. After the threads have been spawned the main thread calls join on all
JoinGuards to ensure the child threads do not outlive it. This strategy is similar to Go’s
WaitGroup but in Rust the thread::scoped function returns a JoinGuard instance. It
is therefore not as optional as the WaitGroup since the caller has to handle the return

52

value in some way. This once again shows Rust’s power to encode usage semantics
into return values.
As noted above the Rust solution directly uses threads. The language provides the
tools to build efficient concurrency abstractions but does not offer a complete
framework like OpenMP. Since the language is still young these frameworks will most
likely be developed by the community in after a stable release. Of course C also provides
raw threading capabilities but in Go concurrency is completely abstracted into goroutines
and the programmer is forced to use those.
There are multiple ways to retrieve calculation results. One choice are channels which
Rust’s standard library also contains. In this case the solution would be identical to
the Go strategy effectively cloning the transmitting end of the channel for each thread.
Another option is shared writing supported by locks or mutexes both of which are also
part of the standard library. Since scoped threads (which are used in this implementation)
are able to share stack data with their owning thread it is possible to write to a shared
variable when locking accordingly. This approach would be comparable to the first
possibility proposed for C above with the additional safety benefits of locking.
Like the previous phase the parallelized Rust variant is the fastest among the compared
implementations (see Table 4.5). And once again this performance comes at the price
of high memory consumption. However it is interesting to note that the memory
footprint only increased slightly when using four threads. This hints at a suboptimal
data layout in the immutable structures of the application which are only allocated once
even in parallel scenarios.

4.5.4. Comparison

This final milestone offered some insight about the difficulty of parallelization in
the three languages. As expected Go shines here with the lowest development time
proving goroutines are a simple yet powerful abstraction for concurrency. C
surprisingly also took very little effort thanks to OpenMP. Combined with the language
inherent speed this makes for a very good result only beaten by Rust in execution time
which is again in a leading position. However the memory footprint is also very high
roughly doubling C in this aspect. Although these are only intermediate results they
show a trend with Rust beeing ahead in both performance and productivity.

4.6. Preparing Execution on the High Performance
Machine

The results for the next chapter were gathered from a machine provided by the research
group. Since access to this machine was only available via Secure Shell (SSH) and had
different libraries installed the code of the various implementations had to be prepared

53

to be able to perform the benchmarks. Although no numeric statistics were tracked they
are briefly described here as they were certainly a part of the development process.

C

When first started on the cluster the binary compiled on the development laptop did
not run correctly. The first problem was the version of the libgomp streets4C was linked
against. This was the result of a newer compiler version on the development laptop
compared to the remote machine which uses a Long Term Support (LTS) distribution and
therefore generally older software. The solution was to simply compile the application
on the remote machine from sources.
Unfortunately not all sources were easily available and as a consequence two libraries
were only linked in binary form. This probably introduced a small performance penalty
as the libraries were not fully optimized but due to time restrictions this approach
had to be chosen. The two libraries in question were the Protocol Buffers C runtime
libprotobuf-c.a and a custom fork of the OSM library libosmpbf.a 21. These two
files were compiled on the development laptop and then copied to the cluster. A better
tool for dependency management would have eliminated this problem.

Go

When preparing the Go implementation for the benchmarks it came in handy the a
Go executable is always linked statically without any further dependencies. Since
the remote machine and the development shared the same architecture the process
was as simple as copying the clustern executing it. Considering that the binary was
never recompiled and could not take advantage of special processor specific features the
performance results from the next chapter are very promising.

Rust

Porting the Rust version posed an interesting challenge. All executable who link against
the Rust standard library require at least a C standard library installed.22 While there
is a minimum required version the compiler takes advantage of newer versions installed
on the compiling system and in turn raises the requirement. This means an executable
linking against a newer version of glibc is not executable with older versions. But the
same code can be compiled on the target system without problems. This strategy was
employed on the remote machine. It is worth mentioning that the excellent toolchain
around cargo was very helpful in the process. In contrast to the C variant where some
21 Located at https://github.com/MrFloya/libosmpbf
22 Currently onle the GNU glibc is supported but that will change. See https://github.com/

rust-lang/rfcs/issues/625 for further information

54

https://github.com/MrFloya/libosmpbf
https://github.com/rust-lang/rfcs/issues/625
https://github.com/rust-lang/rfcs/issues/625

libraries were not available and had to copied from the development laptop cargo was
able to fetch all dependencies and build them without any problems.

55

5. Evaluation

This chapter provides the analysis of the statistics gathered from the final implementations.
As stated in the introduction the evaluation considers raw performance characteristics
as well as developer productivity. Both areas are evaluated based on results from the
previous chapter.

All data in this chapter was gathered from a high performance computer by courtesy
of the research group Scientific Computing. The machine has access to four 12-core
processors and 128 GB of memory. It is therefore ideal to compare shared memory
performance on a large scale.

5.1. Performance

In high-performance computing the most important criteria when evaluating a language
is performance. The important statistic that was tracked to compare performance is
execution time. The benchmarks that were performed on the development laptop also
roughly measured memory usage but that proved difficult to automate on the remote
machine. It is therefore not directly included in this final evaluation. Table 5.1 shows
the benchmark results in varying concurrency scenarios from single threaded execution
up to 48 calculating in parallel.

threads/goroutines C Go Rust
1 21:51:18 16:48:19 14:15:06
2 12:29:56 10:21:36 09:12:47
4 07:16:34 05:58:35 05:09:56
8 04:13:04 03:01:54 02:49:35
12 03:17:28 02:06:08 01:55:33
24 02:06:08 01:13:47 01:03:34
48 01:21:58 00:53:54 00:44:54

Table 5.1.: Execution time of the final applications (100K nodes)

These results already contain the first real surprise. C was chosen as a comparative
baseline, since it is one of the two big programming languages in HPC and is the slowest

56

of the three compared languages in all configurations. In contrast the preliminary bench-
marks on the development laptop showed C at least in second place in the performance
comparison. As briefly mentioned in the previous chapter this performance regression
might have been caused by the two unoptimized libraries that were compiled on the
development laptop and copied to the cluster. However this shows that C is still very
much compiler and machine dependent.
In contrast the Go binary that was also compiled on the development laptop was executed
without any changes on the target machine and shows great result even reaching similar
performance to Rust in the high concurrency configurations. This shows that a
garbage collected language is not immediately unsuitable for use in HPC. Combined
with the portability caused by full static linking Go might very well be suited for cluster
computations on nodes with a minimum of system libraries installed.
Finally Rust demonstrates that it might be a competent successor to C in HPC. It
is the fastest language out of the compared three across all scenarios while providing
additional memory safety through its unique type system. It prevented multiple errors
from compiling in the Rust implementation throughout the whole development process.
On one occasion it even revealed an error which had gone unnoticed in both C and
Go. This really highlights how static analysis can provide safety without sacrificing
performance.
Another important statistic to compare is the parallel speedup. A slow execution
time alone does not mean a language is completely unfit for HPC because the implemen-
tation might simply be flawed to begin with. If this is the case the application can still
offer above average speedups making it viable for high concurrency scenarios.
Table 5.2 lists the achieved speedup for each language in the same configurations as
above.

threads/goroutines C Go Rust
1 1.0000 1.0000 1.0000
2 1.7486 1.6221 1.5469
4 3.0037 2.8119 2.7590
8 5.1816 5.5432 5.0424
12 6.6406 7.9941 7.4003
24 10.3961 13.6659 13.4520
48 15.9980 18.7072 19.0445

Table 5.2.: Parallel speedup of the final applications (100K nodes)

Again the results are interesting for multiple reasons. C scales very well up to four
threads but falls off quite heavily. Rust and Go are evenly matched with Go scaling
better up to the final benchmark with 48 threads where it gets beaten slightly by Rust. It
would be interesting to see the trend continue here but unfortunately the target machine
only offered 48 logical cores. C’ strong scaling in the lower thread counts shows

57

OpenMP’s efficiency in generating threaded code for common desktop scenarios.
In the high concurrency configurations though the scaling diminishes resulting in
a big discrepancy of about 3 (~13%). For these use cases it might be worthwhile to
implement custom parallelization with pthreads.1 This approach will most likely
result in much higher development time but might yield better performance results
for higher thread counts.
Rust and Go scale both comparably well as Table 5.2 shows. Although the final speedup
of about 19 is extremly impressive for 48 threads it is still a serious improvement about
the serial version. It is also important to note that the threads share the work with
statically which means there is no load balancing once the threads are started. This
results in some threads exiting early effectively reducing the speedup. To solve
this the work could be dynamically distributed for example through a queue like
construct which threads use to retrieve new tasks. A possible implementation could be
channel based as both Go and Rust offer those as part of the standard library.

1 2 4 8 12 24 48
0

20,000

40,000

60,000

80,000

Amount of threads

Ex
ec
ut
io
n
tim

e
(s
ec
)

C
Go
Rust

(a) Execution time

1 2 4 8 12 24 48

1

2

4

8

16

32

64

Amount of threads

Sp
ee
du

p

C
Go
Rust
ideal

(b) Parallel speedup

Figure 5.1.: Performance metrics across the various milestones

Figure 5.1 compares the execution time and speedup side by side. As expected
no implementation reaches linear speedup but there are large differences between the
languages. C offers a nearly constant growth with the least amount variation but has
the lowest scaling overall. Rust and Go on the other hand fluctuate in the lower thread
counts and achieve similar goo results in the high concurrency configurations. As
mentioned multiple times Rust offers the best overall performance in both execution
time and parallel speedup.

1 http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html

58

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html

5.2. Productivity and additional Metrics

Next to performance the second main criterion evaluated in this thesis is developer
productivity. The two numeric statistics tracked to compare this category are SLOC
count and development time. While the SLOC count is certainly not the best code
quality metric it allows for some basic conclusions. Less lines can contain potentially
less errors, lowering maintenance costs, and should take less time to develop. This is
obviously not always the case but Figure 5.2 confirm this correlation for the evaluated
implementations.

1 2 3 4 5
0

5,000

10,000

15,000

20,000

25,000

Milestone

To
ta
lt

im
e
(s
ec
)

C
Go
Rust

(a) Development time

1 2 3 4 5 6
0

200

400

600

800

Milestone

SL
O
C

C
Go
Rust

(b) SLOC counts

Figure 5.2.: Productivity metrics across the various milestones

Comparing developer productivity C comes in last by a large margin. The high
development time can be traced back to the manual implementation of common
data structures and the high amount of memory and type related errors en-
countered during the development. This naturally lead to a much higher SLOC count
which was increased further by code duplication caused by the conventional header files.
It is important to note here that the SLOC count for C is also partially caused by
the dominant bracing style. While Go forces the programmer to set all curly braces
on the same line as the preceding statement the C implementations were written in a
different style always placing curly braces on new lines. Rust follows the Go rules but
only encourages them as a convention allowing for other styles to be used. This in turn
produces some extra lines on the C side while Rust and Go remain unaffected. However
the difference is still way too significant to be only attributed to the style choice.
Rust and Go on the other hand both allow for substantial productivity gains as
Figure 5.2 clearly shows. There seems to be just a little tradeoff between the two
tracked criteria with Rust requiring slightly less lines of code while Go is a little faster

59

to develop in. Although the results are so close together that it does not matter a lot
when compared to C. While these changes are certainly largely caused by the languages
themselves especially the lower development time is also caused by the superior
tooling. Both Go and Rust offer excellent tool support for dependency manage-
ment and other parts of the build process like testing. Especially for compilations on
foreign machines this is invaluable because the application is mostly independent from
systemwide installed libraries.
All these results reinforce the inital motivation from the Introduction for a new successor
to C in the context of high-performance computing. Considering productivity only,
both Go and Rust offer excellent advantages over C.

60

6. Conclusion

In this final chapter a short summary is given and the thesis concludes with a brief
description of possible improvements and future work.

6.1. Summary

The results from the previous chapter indicate that C might not be the best choice for high
performance applications anymore. While C has been known to be a lesser productive
language (mostly but not exclusively due to manual memory management) there
was usually a tradeoff between performance and productivity. Since in HPC
low execution times are the highest goal the lower productivity was accepted
to eventually gain superior speed. This thesis proves that this tradeoff does not
neccessarily have to exist anymore as new languages provide higher productivity
paired with equal or better performance characteristics. While the produced results
are certainly not comprehensive enough to completely invalidate C as the high performance
language to use they still show that there are possible successors with Go and Rust.
Go as a garbage collected languages allows the programmer to forget about memory
management. This can be helpful especially for newcomers because they are able to
focus on the core functionality. Similarly scientists of other fields are able to just focus
on their research and expressing it in code without having to think about allocations
and memory freeing. Concurrency is an built into the language and goroutines
allow for simple parallelization in shared memory scenarios. All this is achieved without
the typical loss of performance as the execution time statistics show.
Although Go’s results are impressive in itself Rust’s benchmarks look even more promising.
As the fastest among the three evaluated languages it is already worth considering
for adoption but combined with the equally good productivity metrics Rust is a
serious contender for the next big language in high-performance computing.
The tooling support is already quite good and improving every day and the standard
library provides a complete toolbox for various kind of concurrency abstrac-
tions. Unfortunately it is currently also limited to shared memory parallelization
(similar to Go) but this might change afte the language gets a first stable release.

61

6.2. Improvements and future Work

Although this evaluation already yielded some interesting results regarding new program-
ming languages in HPC there are still lots of potential research topics in this area.
Also there are some missed opportunities for a more complete result which were just not
considered or skipped due to time constraints. This section addresses both of these areas
and concludes this thesis.

General Code Quality

As mentioned a few times in the thesis the quality of the implementations might not be
optimal especially in the case streets4C. This can mostly be attributed to the author’s lack
of equal experience in the three evaluated languages. While this is to a point intentional,
as scientists might not be proficient in these languages either, the implementations could
be reviewed by language experts to really demonstrate the absolute highest possible
performance.

Limited Benchmark Configurations

Although the benchmark results presented in the previous chapter allow for some decent
conclusions, the configurations could have been varied some more. Especially the
problem size, which was fixed at 100K nodes, could have been varied for multiple
thread amounts. Another possible comparison could include different compilers for
C and Go (Rust currently only has one reference implementation) or multiple compiler
and library versions revealing possible regressions across versions.

Limitation to shared Memory

While thread based concurrency is certainly an important aspect in HPC the dominant
model is distributed memory with communication via message passing. This
technique was not evaluated in this thesis because of missing library support but the
general performance of the languages should still be applicable. As both Rust and Go
have good capabilities to link to native C libraries it might be possible to use a standard
MPI implementation today. A complete library written in the target language should be
preferred whenever available though because interfacing with C often restricts the types
which can be used. When these libraries have matured enough (if ever) it might be very
valuable to reassess the candidates in the HPC context.

62

Bibliography

[Arm03] Joe Armstrong. “Making reliable distributed systems in the presence of
sodware errors”. dissertation. Stockholm, Sweden: The Royal Institute of
Technology, Department of Microelectronics and Information Technology,
Dec. 2003. url: http://www.erlang.org/download/armstrong_thesis_
2003.pdf (visited on 13. 03. 2015).

[Che+07] Mo Chen et al. Priority Queues and Dijkstra’s Algorithm. Technical report
TR-07-54. The University of Texas at Austin, Department of Computer
Science, Oct. 12, 2007. url: http://www3.cs.stonybrook.edu/~rezaul/
papers/TR-07-54.pdf.

[Cor+09] Thomas H. Cormen et al. Introduction to Algorithms, 3rd Edition. 3rd. The
MIT Press, July 2009. isbn: 9780262033848.

[CT09] Francesco Cesarini and Simon Thompson. Erlang programming. A Concur-
rent Approach to Software Development. Beijing: O’Reilly, June 2009. isbn:
9780596518189.

[Dev] Google Developers. Protocol Buffers. url: https://developers.google.
com/protocol-buffers/ (visited on 21. 04. 2015).

[dev] OpenBSD developers. OpenSSH Project Goals. url: http://www.openssh.
com/goals.html (visited on 22. 04. 2015).

[Dow11] Malcolm Dowse. Erlang and First-Person Shooters. June 2011. url: http://
www.erlang-factory.com/upload/presentations/395/ErlangandFirst-
PersonShooters.pdf (visited on 13. 03. 2015).

[Dox12] Caleb Doxsey. An Introduction to Programming in Go. Lexington, KY: Cre-
ateSpace Independent Publishing Platform, Sept. 2012. isbn: 9781478355823.

[Fit13] Bradley Joseph Fitzpatrick. dl.google.com: Powered by Go. July 26, 2013.
url: http://talks.golang.org/2013/oscon-dl.slide (visited on 18. 02.
2015).

[FN12] Julian Fietkau and Joachim Nitschke. Project Report: Streets4MPI. Hamburg,
May 21, 2012. url: http://wr.informatik.uni-hamburg.de/_media/
research/labs/2012/2012- 05- julian_fietkau_joachim_nitschke-
streets4mpi-report.pdf (visited on 18. 02. 2015).

63

http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www.erlang.org/download/armstrong_thesis_2003.pdf
http://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
http://www3.cs.stonybrook.edu/~rezaul/papers/TR-07-54.pdf
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.openssh.com/goals.html
http://www.openssh.com/goals.html
http://www.erlang-factory.com/upload/presentations/395/ErlangandFirst-PersonShooters.pdf
http://www.erlang-factory.com/upload/presentations/395/ErlangandFirst-PersonShooters.pdf
http://www.erlang-factory.com/upload/presentations/395/ErlangandFirst-PersonShooters.pdf
http://talks.golang.org/2013/oscon-dl.slide
http://wr.informatik.uni-hamburg.de/_media/research/labs/2012/2012-05-julian_fietkau_joachim_nitschke-streets4mpi-report.pdf
http://wr.informatik.uni-hamburg.de/_media/research/labs/2012/2012-05-julian_fietkau_joachim_nitschke-streets4mpi-report.pdf
http://wr.informatik.uni-hamburg.de/_media/research/labs/2012/2012-05-julian_fietkau_joachim_nitschke-streets4mpi-report.pdf

Bibliography

[Guo14] Philip Guo. Python is Now the Most Popular Introductory Teaching Language
at Top U.S. Universities. Oct. 7, 2014. url: http://cacm.acm.org/blogs/
blog-cacm/176450-python-is-now-the-most-popular-introductory-
teaching-language-at-top-us-universities/fulltext (visited on 07.
12. 2014).

[Héb13] Fred Hébert. Learn you some Erlang for great good! a beginner’s guide.
San Francisco: No Starch Press, 2013. isbn: 9781593274351. url: http:
//learnyousomeerlang.com/content.

[Ini] The Open Source Initiative. About the Open Source Initiative. url: http:
//opensource.org/about (visited on 25. 04. 2015).

[Lub14] Bill Lubanovic. Introducing Python. Modern Computing in Simple Packages.
1st ed. Beijing: O’Reilly Media, Inc., Nov. 26, 2014. isbn: 9781449359362.

[Lud11] Thomas Ludwig. The Costs of Science in the Exascale Era. May 31, 2011.
url: http://perso.ens-lyon.fr/laurent.lefevre/greendaysparis/
slides/greendaysparis_Thomas_Ludwig.pdf (visited on 02. 12. 2014).

[maia] The Go project maintainers. The Go Programming Language. url: https:
//golang.org/ (visited on 27. 04. 2015).

[maib] The Go project maintainers. The Go Programming Language - Effective Go.
url: https://golang.org/doc/effective_go.html (visited on 06. 04.
2015).

[maic] The Go project maintainers. The Go Programming Language - Package
testing. url: http://golang.org/pkg/testing/ (visited on 11. 02. 2015).

[Mit14] Sparsh Mittal. “A Study of Successive Over-relaxation Method Parallelisation
over Modern HPC Languages”. In: International Journal of High Performance
Computing and Networking 7.4 (June 2014), pp. 292–298. issn: 1740-0562.
doi: 10.1504/IJHPCN.2014.062731.

[MS] ANL Mathematics and Computer Science. The Message Passing Interface
(MPI) standard. url: http://www.mcs.anl.gov/research/projects/mpi/
(visited on 06. 04. 2015).

[Nan+13] Sebastian Nanz et al. “Benchmarking Usability and Performance of Multicore
Languages”. In: Empirical Software Engineering and Measurement, 2013
ACM / IEEE International Symposium on. Oct. 2013, pp. 183–192. doi:
10.1109/ESEM.2013.10.

[Proa] LLVM Project. LLVM Language Reference Manual. url: http://llvm.org/
docs/LangRef.html (visited on 06. 04. 2015).

[Prob] LLVM Project. The LLVM Compiler Infrastructure - Overview. url: http:
//llvm.org (visited on 06. 04. 2015).

[Proc] The OpenStreetMap Project. OpenStreeMap Wiki - "PBF Format". url:
http://wiki.openstreetmap.org/wiki/PBF_Format (visited on 18. 02.
2015).

64

http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://learnyousomeerlang.com/content
http://learnyousomeerlang.com/content
http://opensource.org/about
http://opensource.org/about
http://perso.ens-lyon.fr/laurent.lefevre/greendaysparis/slides/greendaysparis_Thomas_Ludwig.pdf
http://perso.ens-lyon.fr/laurent.lefevre/greendaysparis/slides/greendaysparis_Thomas_Ludwig.pdf
https://golang.org/
https://golang.org/
https://golang.org/doc/effective_go.html
http://golang.org/pkg/testing/
http://dx.doi.org/10.1504/IJHPCN.2014.062731
http://www.mcs.anl.gov/research/projects/mpi/
http://dx.doi.org/10.1109/ESEM.2013.10
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://llvm.org
http://llvm.org
http://wiki.openstreetmap.org/wiki/PBF_Format

Bibliography

[SKP06] Sayantan Sur, Matthew J. Koop, and Dhabaleswar K. Panda. “High-
performance and Scalable MPI over InfiniBand with Reduced Memory
Usage: An In-depth Performance Analysis”. In: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing. SC ’06. Tampa, Florida: ACM,
2006. isbn: 0-7695-2700-0. doi: 10.1145/1188455.1188565. url: http:
//doi.acm.org/10.1145/1188455.1188565.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. 1st ed. Addison-Wesley
Professional, Apr. 1994. isbn: 9780201543308.

[WFV14] F.D. Witherden, A.M. Farrington, and P.E. Vincent. “PyFR: An open
source framework for solving advection–diffusion type problems on streaming
architectures using the flux reconstruction approach”. In: Computer Physics
Communications 185.11 (2014), pp. 3028–3040. issn: 0010-4655. doi: 10.
1016 / j . cpc . 2014 . 07 . 011. url: http : / / www . sciencedirect . com /
science/article/pii/S0010465514002549.

65

http://dx.doi.org/10.1145/1188455.1188565
http://doi.acm.org/10.1145/1188455.1188565
http://doi.acm.org/10.1145/1188455.1188565
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://www.sciencedirect.com/science/article/pii/S0010465514002549
http://www.sciencedirect.com/science/article/pii/S0010465514002549

List of Figures

3.1 Architecture overview: Streets4MPI [FN12, p. 9] 17
3.2 Milestone overview . 20

5.1 Performance metrics across the various milestones 58
5.2 Productivity metrics across the various milestones 59

66

List of Tables

4.1 Milestone 1: Counting nodes, ways and relations 28
4.2 Milestone 2: Building a basic graph representation 33
4.3 Milestone 3: Verifying the implementation 40
4.4 Milestone 4: Sequential benchmark . 44
4.5 Milestone 5: Parallel benchmark . 48

5.1 Execution time of the final applications (100K nodes) 56
5.2 Parallel speedup of the final applications (100K nodes) 57

67

List of Listings

2.1 FizzBuzz in Python 3.4 . 9
2.2 Erlang example . 11
2.3 Go concurrency example . 13
2.4 Rust example . 15

4.1 Project setup: streets4C . 24
4.2 Project setup: streets4Go . 25
4.3 Full setup for new Go projects . 26
4.4 Project setup: streets4Rust . 26
4.5 Manual memory management with Protobuf in C 29
4.6 Dependency management in Go . 30
4.7 Idiomatic error handling in Go . 31
4.8 OSM decoding in Rust . 32
4.9 Graph representation in C . 34
4.10 Graph representation in Go . 36
4.11 Priority queue in Go . 37
4.12 DijkstraGraph in Rust . 39
4.13 Map lookup in Go . 42
4.14 Map lookup in Rust . 43
4.15 Haversine formula in Go . 45
4.16 Zipped iterators in Rust . 46
4.17 Parallelization with OpenMP . 49
4.18 Parallelization with goroutines . 50
4.19 Parallelization with threads in Rust . 52

B.1 Output of uname -a . 74
B.2 Output of lscpu . 74
B.3 Output of uname -a . 75
B.4 Output of lscpu . 75

C.1 Output of gcc --version . 76
C.2 Output of go version . 76
C.3 Output of rustc --version . 76
C.4 Output of cargo --version . 76

68

Appendices

69

70

A. Glossary

API
Application Programming Interface

BEAM
Bogdan/Björn’s Erlang Abstract Machine

Bogdan/Björn’s Erlang Abstract Machine
The virtual machine which runs Erlang. It loads bytecode which is converted
directly to threaded native code and executed.

goroutine
A lightweigth concurrently executing function which gets multiplexed into OS
threads by the Go runtime [maib]

HPC
high-performance computing

intrinsic
An intrinsic function is a function in a programming language which is handled
specifically by the compiler. This is often used to optimize common operations for
the target processor.

iterator invalidation
A common problem in languages without automatic memory management which
can occur when an iterator is used on a mutable container. For example when
iterating over a dynamically growing vector which reallocates itself, the pending
iterator pointer can become dangling. Thus making it effectively unusable or
invalid.

LLVM
The LLVM Compiler Infrastructure Project (formerly short for Low Level Virtual
Machine) is an umbrella project for various compiler and other low-level tools.
LLVM Core is the primary subproject and a set of libraries for code generation
and optimization for various platforms. [Prob]

71

LLVM Intermediate Representation
A low level programming language similar to assembly. It is the code representation
LLVM uses in its Core libraries. LLVM IR is platform-agnostic with the “capability
of representing ‘all‘ high-level languages cleanly” [Proa].

LLVM IR
LLVM Intermediate Representation

Long Term Support
Mostly applied to Linux distributions, a Long Time Support version is a specific
release with an extended support cycle. This means no new feaures get added but
security patches are backported. LTS versions therefore offer better stability and
security for mission-critical systems.

loop unrolling
Loop unrolling or loop unwinding is a common optimization used by compilers
trading binary-size for speed. A loop gets transformed into the seperate instructions
to avoid the overhead of the loop control instructions.

LTS
Long Term Support

Message Passing Interface
The Message Passing Interface standard is a library specification developed by a
committee of vendors, implementors and users. It is the current cominant model
used in high-performance computing and implementations for many platforms (both
commercial and free) are available including bindings for various programming
languages [MS; SKP06].

MPI
Message Passing Interface

Open Source Initiative
The Open Source Initiative is a non-profit organization based in California which
was “formed to educate about and advocate for the benefits of open source and to
build bridges among different constituencies in the open source community” [Ini].

OpenStreetMap
OpenStreetMap is a collaborative project which aims collect and maintain geograph-
ical data about roads, trails, railways stations and more. As the name suggests the
data is provided openly under the Open Data Commons Open Database License 1.

1 http://opendatacommons.org/licenses/odbl/

72

http://opendatacommons.org/licenses/odbl/

OSI
Open Source Initiative

OSM
OpenStreetMap

Protocol Buffers
“Protocol buffers are Google’s language-neutral, platform-neutral, extensible mech-
anism for serializing structured data” [Dev]

Secure Shell
Secure Shell is an encrypted network protocol aimed to replace clear text password
transmitting protocols like telnet, rlogin and ftp. [dev].

Single Source Shortest Path
A common graph problem searching for shortest paths between nodes of a graph.
As the name suggests this type of problem states the use a single node as starting
point and aims to determine shortest paths to all remaining nodes of the graph.
Dijkstra’s algorithm is commonly used for graphs with nonnegative edge weights
while the Bellman-Ford-Algorithm can even handle that case.

SLOC
source lines of code

source lines of code
A software metric counting the number of lines in a program’s source code. Often
used to roughly estimate developer productivity and maintainability

SSH
Secure Shell

SSSP
Single Source Shortest Path

TDD
test-driven development

XML
Extensible Markup Language

73

B. System configuration

Development laptop

Linux florian -arch 3.19.3 -3 - ARCH #1 SMP PREEMPT Wed Apr 8
↪→ 14:10:00 CEST 2015 x86_64 GNU/Linux

Listing B.1: Output of uname -a

Architecture : x86_64
CPU op -mode(s): 32-bit , 64-bit
Byte Order: Little Endian
CPU(s): 8
On -line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 42
Model name: Intel(R) Core(TM) i7 -2630 QM CPU @

↪→ 2.00 GHz
Stepping : 7
CPU MHz: 805.312
CPU max MHz: 2900 ,0000
CPU min MHz: 800 ,0000
BogoMIPS : 3992.95
Virtualization : VT -x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 6144K
NUMA node0 CPU(s): 0-7

Listing B.2: Output of lscpu

74

Cluster

Linux magny1 3.8.0 -44 - generic #66~ precise1 -Ubuntu SMP Tue
↪→ Jul 15 04:01:04 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

Listing B.3: Output of uname -a

Architecture : x86_64
CPU op -mode(s): 32-bit , 64-bit
Byte Order: Little Endian
CPU(s): 48
On -line CPU(s) list: 0-47
Thread(s) per core: 1
Core(s) per socket: 12
Socket(s): 4
NUMA node(s): 8
Vendor ID: AuthenticAMD
CPU family: 16
Model: 9
Stepping : 1
CPU MHz: 800.000
BogoMIPS : 3800.11
Virtualization : AMD -V
L1d cache: 64K
L1i cache: 64K
L2 cache: 512K
L3 cache: 5118K
NUMA node0 CPU(s): 0-5
NUMA node1 CPU(s): 6-11
NUMA node2 CPU(s): 12 -17
NUMA node3 CPU(s): 18 -23
NUMA node4 CPU(s): 24 -29
NUMA node5 CPU(s): 30 -35
NUMA node6 CPU(s): 36 -41
NUMA node7 CPU(s): 42 -47

Listing B.4: Output of lscpu

75

C. Software versions

These are the compiler and toolchain versions which were used to develop and compile
all code in this thesis.

gcc (GCC) 4.9.2 20150304 (prerelease)
Copyright (C) 2014 Free Software Foundation , Inc.
This is free software ; see the source for copying

↪→ conditions . There is NO
warranty ; not even for MERCHANTABILITY or FITNESS FOR A

↪→ PARTICULAR PURPOSE .

Listing C.1: Output of gcc --version

go version go1 .4.2 linux/amd64

Listing C.2: Output of go version

rustc 1.1.0 - nightly (5 fb0259ed 2015 -04 -26) (built
↪→ 2015 -04 -27)

Listing C.3: Output of rustc --version

cargo 0.2.0 - nightly (dac600c 2015 -04 -22) (built 2015 -04 -26)

Listing C.4: Output of cargo --version

76

D. Final notes

All source code is available at https://github.com/mrfloya/thesis-ba under various
Open Source Initiative (OSI) approved licenses. The versions containing all code from
intermediate milestones are in a separate branch called incremental. The master
branch only consists of the final variants that were used in the benchmarks on the cluster.
The Rust implementation was compiled with the version shown in Listing C.3. Unfortu-
nately it as not possible to compile the code with the current beta version at the time of
this writing (1.0.0-beta.2). Because of this the application will most likely not compile
with 1.0.0 either. The code in the repository mentioned above will be updated as soon it
compiles with a stable Rust release.

77

https://github.com/mrfloya/thesis-ba

Erklärung

Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen, als die
angegebenen Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten In-
ternetquellen – benutzt habe, die Arbeit vorher nicht in einem anderen Prüfungsverfahren
eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.

Ich bin mit der Einstellung der Bachelor-Arbeit in den Bestand der Bibliothek des
Fachbereichs Informatik einverstanden.

Hamburg, den 02.05.2015 .

78

	Introduction
	Motivation
	Goals of this Thesis
	Structure

	State of the art
	Programming Paradigms in Fortran and C
	Language Candidates

	Concept
	Overview of the Case Study streets4MPI
	Differences and Limitations
	Implementation Process
	Overview of evaluated Criteria
	Related Work

	Implementation
	Project Setup
	Counting Nodes, Ways and Relations
	Building a basic Graph Representation
	Verifying Structure and Algorithm
	Benchmarking Graph Performance
	Benchmarking Parallel Execution
	Preparing Execution on the High Performance Machine

	Evaluation
	Performance
	Productivity and additional Metrics

	Conclusion
	Summary
	Improvements and future Work

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Glossary
	System configuration
	Software versions
	Final notes

